Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(1): 94-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535360

RESUMO

There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.


Assuntos
Desferroxamina/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Pressão/efeitos adversos , Úlcera/tratamento farmacológico , Administração Cutânea , Animais , Apoptose/efeitos dos fármacos , Desferroxamina/administração & dosagem , Desferroxamina/farmacologia , Derme/irrigação sanguínea , Derme/efeitos dos fármacos , Derme/patologia , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/patologia , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL , Necrose , Neovascularização Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Úlcera/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos
2.
Plast Reconstr Surg ; 137(2): 546-556, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26818289

RESUMO

BACKGROUND: Sutureless microvascular anastomosis has great translational potential to simplify microvascular surgery, shorten operative times, and improve clinical outcomes. The authors developed a transient thermoreversible microvascular stent using a poloxamer to maintain vessel lumen patency before application of commercially available adhesives to seal the anastomosis instead of sutures. Despite technical success, human application necessitates bovine serum albumin removal from existing formulations; rapid poloxamer transition between states; and increased stiffness for reliable, reproducible, and precise microvascular approximation. METHODS: Two commercially available poloxamers were used in this study (P407 and P188). After removing bovine serum albumin, each poloxamer was tested at varying concentrations either alone or in combination to determine the optimal preparation for sutureless microvascular anastomosis. Transition temperature and formulation stiffness were tested in vitro by rheometry, with the most promising combinations tested in an established in vivo model. RESULTS: Increasing poloxamer concentration resulted in an increase in stiffness and decrease in transition temperature. Pure P188 without bovine serum albumin, dissolved in phosphate-buffered saline to a 45% concentration, demonstrated desirable rheologic behavior, with precise gel transition and increased gel stiffness compared with our previous formulation of 17% P407 (96 kPa versus 10 kPa). These characteristics were optimal for microsurgical intravascular use, offering surgical precision and control between liquid and solid states, depending on the surgically controlled local temperature. CONCLUSIONS: Use of 45% P188 without bovine serum albumin demonstrated optimal rheologic and translational properties as a microvascular stent for sutureless anastomosis. Rapid transition, increased stiffness, and safety profile demonstrate safe translational application for human clinical trials.


Assuntos
Aorta Torácica/cirurgia , Microcirurgia/métodos , Poloxâmero , Stents , Técnicas de Sutura , Procedimentos Cirúrgicos Vasculares/métodos , Anastomose Cirúrgica/métodos , Animais , Bovinos , Modelos Animais de Doenças , Masculino , Desenho de Prótese , Ratos , Ratos Sprague-Dawley , Temperatura
3.
Plast Reconstr Surg ; 135(2): 340e-350e, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25626819

RESUMO

BACKGROUND: Endothelial progenitor cells have been shown to traffic to and incorporate into ischemic tissues, where they participate in new blood vessel formation, a process termed vasculogenesis. Previous investigation has demonstrated that endothelial progenitor cells appear to mobilize from bone marrow to the peripheral circulation after exercise. In this study, the authors investigate potential etiologic factors driving this mobilization and investigate whether the mobilized endothelial progenitor cells are the same as those present at baseline. METHODS: Healthy volunteers (n = 5) performed a monitored 30-minute run to maintain a heart rate greater than 140 beats/min. Venous blood samples were collected before, 10 minutes after, and 24 hours after exercise. Endothelial progenitor cells were isolated and evaluated. RESULTS: Plasma levels of stromal cell-derived factor-1α significantly increased nearly two-fold immediately after exercise, with a nearly four-fold increase in circulating endothelial progenitor cells 24 hours later. The endothelial progenitor cells isolated following exercise demonstrated increased colony formation, proliferation, differentiation, and secretion of angiogenic cytokines. Postexercise endothelial progenitor cells also exhibited a more robust response to hypoxic stimulation. CONCLUSIONS: Exercise appears to mobilize endothelial progenitor cells and augment their function by means of stromal cell-derived factor 1α-dependent signaling. The population of endothelial progenitor cells mobilized following exercise is primed for vasculogenesis with increased capacity for proliferation, differentiation, secretion of cytokines, and responsiveness to hypoxia. Given the evidence demonstrating positive regenerative effects of exercise, this may be one possible mechanism for its benefits.


Assuntos
Quimiocina CXCL12/fisiologia , Quimiotaxia , Células Progenitoras Endoteliais/fisiologia , Exercício Físico/fisiologia , Adulto , Contagem de Células Sanguíneas , Diferenciação Celular , Hipóxia Celular , Quimiocina CXCL12/sangue , Quimiotaxia/fisiologia , Ensaio de Unidades Formadoras de Colônias , Citocinas/metabolismo , Replicação do DNA , Eritropoetina/sangue , Citometria de Fluxo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Masculino , Comunicação Parácrina , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Corrida , Fatores de Tempo
4.
J Biomech ; 47(9): 1997-2005, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24709567

RESUMO

Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.


Assuntos
Cicatriz/fisiopatologia , Fibrose/fisiopatologia , Mecanotransdução Celular/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA