RESUMO
The interaction of some human antibodies with heme results in posttranslational acquisition of binding to various self- and pathogen-derived antigens. The previous studies on this phenomenon were performed with oxidized heme (Fe3+). In the present study, we elucidated the effect of other pathologically relevant species of heme, i.e., species that were formed after contact of heme with oxidizing agents such as hydrogen peroxide, situations in which heme's iron could acquire higher oxidation states. Our data reveal that hyperoxidized species of heme have a superior capacity to heme (Fe3+) in triggering the autoreactivity of human IgG. Mechanistic studies demonstrated that oxidation status of iron was of critical importance for the heme's effect on antibodies. We also demonstrated that hyperoxidized heme species interacted at higher affinities with IgG and that this binding occurred through a different mechanism as compared to heme (Fe3+). Regardless of their profound functional impact on the antigen-binding properties of antibodies, hyperoxidized species of heme did not affect Fc-mediated functions of IgG, such as binding to the neonatal Fc receptor. The obtained data contribute to a better understanding of the pathophysiological mechanism of hemolytic diseases and of the origin of elevated antibody autoreactivity in patients with some hemolytic disorders.
Assuntos
Heme , Imunoglobulina G , Recém-Nascido , Humanos , Heme/metabolismo , Oxirredução , Imunidade Adaptativa , FerroRESUMO
Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Broadly neutralizing human antibodies (bNAbs) with exceptional activity against HIV-1 are currently being tested in HIV-1 prevention trials. The selection of anti-HIV-1 bNAbs for clinical development was primarily guided by their in vitro neutralizing activity against HIV-1 Env pseudotyped viruses. Here we report on the neutralizing activity of 9 anti-HIV-1 bNAbs now in clinical development against 126 Clade A, C, D PBMC-derived primary African isolates. The neutralizing potency and breadth of the bNAbs tested was significantly reduced compared to pseudotyped viruses panels. The difference in sensitivity between pseudotyped viruses and primary isolates varied from 3- to nearly 100-fold depending on the bNAb and the HIV-1 clade. Thus, the neutralizing activity of bNAbs against primary African isolates differs from their activity against pseudovirus panels. The data have significant implications for interpreting the results of ongoing HIV-1 prevention trials.IMPORTANCE HIV remains a major public health problem worldwide, and new therapies and preventive strategies are necessary for controlling the epidemic. Broadly neutralizing antibodies (bNAbs) have been developed in the past decade to fill this gap. The neutralizing activity of these antibodies against diverse HIV strains has mostly been measured using Env-pseudotyped viruses, which overestimate bNAb coverage and potency. In this study we measured the neutralizing activity of nine bNAbs against clade A, C, and D HIV isolates derived from cells of African patients living with HIV and produced in peripheral blood mononuclear cells. We found that the coverage and potency of bNAbs were often significantly lower than what was predicted by Env-psuedotyped viruses, and that this decrease was related to the bNAb biding site class. This data is important for the planning and analysis of clinical trials that seek to evaluate bNAbs for the treatment and prevention of HIV infection in Africa.
RESUMO
Echovirus-30 (E-30) is responsible for the extensive global outbreaks of meningitis in children. To gain access to the central nervous system, E-30 first has to cross the epithelial blood-cerebrospinal fluid barrier. Several meningitis causing bacteria preferentially infect human choroid plexus papilloma (HIBCPP) cells in a polar fashion from the basolateral cell side. Here, we investigated the polar infection of HIBCPP cells with E-30. Both apical and basolateral infections caused a significant decrease in the transepithelial electrical resistance of HIBCPP cells. However, to reach the same impact on the barrier properties, the multiplicity of infection of the apical side had to be higher than that of the basolateral infection. Furthermore, the number of infected cells at respective time-points after basolateral infection was significantly higher compared to apical infection. Cytotoxic effects of E-30 on HIBCPP cells during basolateral infection were observed following prolonged infection and appeared more drastically compared to the apical infection. Gene expression profiles determined by massive analysis of cDNA ends revealed distinct regulation of specific genes depending on the side of HIBCPP cells' infection. Altogether, our data highlights the polar effects of E-30 infection in a human in vitro model of the blood-cerebrospinal fluid barrier leading to central nervous system inflammation.
Assuntos
Barreira Hematoencefálica/virologia , Plexo Corióideo/virologia , Enterovirus Humano B/patogenicidade , Redes Reguladoras de Genes , Adulto , Barreira Hematoencefálica/metabolismo , Polaridade Celular , Sobrevivência Celular , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Impedância Elétrica , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Biológicos , Células Tumorais CultivadasRESUMO
BACKGROUND: Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood-cerebrospinal fluid barrier (BCSFB) or the endothelial blood-brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. METHODS: In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. RESULTS: Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. CONCLUSION: Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.
Assuntos
Movimento Celular/imunologia , Plexo Corióideo/metabolismo , Plexo Corióideo/virologia , Infecções por Echovirus/imunologia , Linfócitos T/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Humanos , Linfócitos T/metabolismo , Células Tumorais CultivadasRESUMO
Passive transfer of broadly neutralizing anti-HIV-1 antibodies (bNAbs) protects against infection, and therefore, eliciting bNAbs by vaccination is a major goal of HIV-1 vaccine efforts. bNAbs that target the CD4 binding site (CD4bs) on HIV-1 Env are among the most broadly active, but to date, responses elicited against this epitope in vaccinated animals have lacked potency and breadth. We hypothesized that CD4bs bNAbs resembling the antibody IOMA might be easier to elicit than other CD4bs antibodies that exhibit higher somatic mutation rates, a difficult-to-achieve mechanism to accommodate Env's N276gp120 N-glycan, and rare five-residue light chain complementarity-determining region 3. As an initial test of this idea, we developed IOMA germline-targeting Env immunogens and evaluated a sequential immunization regimen in transgenic mice expressing germline-reverted IOMA. These mice developed CD4bs epitope-specific responses with heterologous neutralization, and cloned antibodies overcame neutralization roadblocks, including accommodating the N276gp120 glycan, with some neutralizing selected HIV-1 strains more potently than IOMA. The immunization regimen also elicited CD4bs-specific responses in mice containing polyclonal antibody repertoires as well as rabbits and rhesus macaques. Thus, germline targeting of IOMA-class antibody precursors represents a potential vaccine strategy to induce CD4bs bNAbs.
Assuntos
Animais Selvagens , HIV-1 , Animais , Coelhos , Camundongos , Animais Selvagens/metabolismo , Anticorpos Amplamente Neutralizantes , Macaca mulatta , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Sítios de Ligação , Antígenos CD4/metabolismo , Animais Geneticamente Modificados , Epitopos , Moléculas de Adesão Celular , PolissacarídeosRESUMO
Echovirus-30 (E-30) is a non-polio enterovirus responsible for meningitis outbreaks in children worldwide. To gain access to the central nervous system (CNS), E-30 first has to cross the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BCSFB). E-30 may use lipid rafts of the host cells to interact with and to invade the BCSFB. To study enteroviral infection of the BCSFB, an established in vitro model based on human immortalized brain choroid plexus papilloma (HIBCPP) cells has been used. Here, we investigated the impact of E-30 infection on the protein content of the lipid rafts at the BCSFB in vitro. Mass spectrometry analysis following E-30 infection versus uninfected conditions revealed differential abundancy in proteins implicated in cellular adhesion, cytoskeleton remodeling, and endocytosis/vesicle budding. Further, we evaluated the blocking of endocytosis via clathrin/dynamin blocking and its consequences for E-30 induced barrier disruption. Interestingly, blocking of endocytosis had no impact on the capacity of E-30 to induce loss of barrier properties in HIBCPP cells. Altogether, these data highlight the impact of E-30 on HIBCPP cells microdomain as an important factor for host cell alteration.
RESUMO
Therapeutic intravenous immunoglobulin preparations (IVIg) are used for treatment of wide range of autoimmune and inflammatory diseases. Versatile mechanisms have been reported to contribute to the immunomodulatory effects of IVIg. Here we demonstrate that IVIg has a strong potential to inhibit pro-inflammatory effect of extracellular heme. Indeed, the presence of immunoglobulins reduced the potential of heme to activate the complement system on the surface of human endothelial cells. Since extracellular heme is considered as one of the principal pathogenic factors in hemolytic disorders, its therapeutic scavenging by IVIg may have significant clinical repercussions.