RESUMO
Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.
Assuntos
Actinas , Retículo Endoplasmático , Actinas/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Filaminas/metabolismo , FenótipoRESUMO
In mammalian cells, mitochondrial dysfunction triggers the integrated stress response, in which the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in the induction of the transcription factor ATF41-3. However, how mitochondrial stress is relayed to ATF4 is unknown. Here we show that HRI is the eIF2α kinase that is necessary and sufficient for this relay. In a genome-wide CRISPR interference screen, we identified factors upstream of HRI: OMA1, a mitochondrial stress-activated protease; and DELE1, a little-characterized protein that we found was associated with the inner mitochondrial membrane. Mitochondrial stress stimulates OMA1-dependent cleavage of DELE1 and leads to the accumulation of DELE1 in the cytosol, where it interacts with HRI and activates the eIF2α kinase activity of HRI. In addition, DELE1 is required for ATF4 translation downstream of eIF2α phosphorylation. Blockade of the OMA1-DELE1-HRI pathway triggers an alternative response in which specific molecular chaperones are induced. The OMA1-DELE1-HRI pathway therefore represents a potential therapeutic target that could enable fine-tuning of the integrated stress response for beneficial outcomes in diseases that involve mitochondrial dysfunction.
Assuntos
Citosol/metabolismo , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Estresse Fisiológico , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/biossíntese , Fator 4 Ativador da Transcrição/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Citosol/enzimologia , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/química , Chaperonas Moleculares/metabolismo , Fosforilação , Ligação ProteicaRESUMO
Interferon-induced transmembrane protein 3 (IFITM3) has previously been identified as an endosomal protein that blocks viral infection1-3. Here we studied clinical cohorts of patients with B cell leukaemia and lymphoma, and identified IFITM3 as a strong predictor of poor outcome. In normal resting B cells, IFITM3 was minimally expressed and mainly localized in endosomes. However, engagement of the B cell receptor (BCR) induced both expression of IFITM3 and phosphorylation of this protein at Tyr20, which resulted in the accumulation of IFITM3 at the cell surface. In B cell leukaemia, oncogenic kinases phosphorylate IFITM3 at Tyr20, which causes constitutive localization of this protein at the plasma membrane. In a mouse model, Ifitm3-/- naive B cells developed in normal numbers; however, the formation of germinal centres and the production of antigen-specific antibodies were compromised. Oncogenes that induce the development of leukaemia and lymphoma did not transform Ifitm3-/- B cells. Conversely, the phosphomimetic IFITM3(Y20E) mutant induced oncogenic PI3K signalling and initiated the transformation of premalignant B cells. Mechanistic experiments revealed that IFITM3 functions as a PIP3 scaffold and central amplifier of PI3K signalling. The amplification of PI3K signals depends on IFITM3 using two lysine residues (Lys83 and Lys104) in its conserved intracellular loop as a scaffold for the accumulation of PIP3. In Ifitm3-/- B cells, lipid rafts were depleted of PIP3, which resulted in the defective expression of over 60 lipid-raft-associated surface receptors, and impaired BCR signalling and cellular adhesion. We conclude that the phosphorylation of IFITM3 that occurs after B cells encounter antigen induces a dynamic switch from antiviral effector functions in endosomes to a PI3K amplification loop at the cell surface. IFITM3-dependent amplification of PI3K signalling, which in part acts downstream of the BCR, is critical for the rapid expansion of B cells with high affinity to antigen. In addition, multiple oncogenes depend on IFITM3 to assemble PIP3-dependent signalling complexes and amplify PI3K signalling for malignant transformation.
Assuntos
Linfócitos B/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Animais , Antígenos CD19/metabolismo , Linfócitos B/enzimologia , Linfócitos B/imunologia , Linfócitos B/patologia , Transformação Celular Neoplásica , Feminino , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/patologia , Humanos , Integrinas/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Modelos Moleculares , Fosforilação , Receptores de Antígenos de Linfócitos B/metabolismoRESUMO
Malignant transformation of cells typically involves several genetic lesions, whose combined activity gives rise to cancer1. Here we analyse 1,148 patient-derived B-cell leukaemia (B-ALL) samples, and find that individual mutations do not promote leukaemogenesis unless they converge on one single oncogenic pathway that is characteristic of the differentiation stage of transformed B cells. Mutations that are not aligned with this central oncogenic driver activate divergent pathways and subvert transformation. Oncogenic lesions in B-ALL frequently mimic signalling through cytokine receptors at the pro-B-cell stage (via activation of the signal-transduction protein STAT5)2-4 or pre-B-cell receptors in more mature cells (via activation of the protein kinase ERK)5-8. STAT5- and ERK-activating lesions are found frequently, but occur together in only around 3% of cases (P = 2.2 × 10-16). Single-cell mutation and phospho-protein analyses reveal the segregation of oncogenic STAT5 and ERK activation to competing clones. STAT5 and ERK engage opposing biochemical and transcriptional programs that are orchestrated by the transcription factors MYC and BCL6, respectively. Genetic reactivation of the divergent (suppressed) pathway comes at the expense of the principal oncogenic driver and reverses transformation. Conversely, deletion of divergent pathway components accelerates leukaemogenesis. Thus, persistence of divergent signalling pathways represents a powerful barrier to transformation, while convergence on one principal driver defines a central event in leukaemia initiation. Pharmacological reactivation of suppressed divergent circuits synergizes strongly with inhibition of the principal oncogenic driver. Hence, reactivation of divergent pathways can be leveraged as a previously unrecognized strategy to enhance treatment responses.
Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Transformação Celular Neoplásica , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Transdução de Sinais , Animais , Linfócitos B/patologia , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT5/metabolismoRESUMO
BACKGROUND AIMS: Chimeric antigen receptor T (CAR-T) cells are a remarkably efficacious, highly promising and rapidly evolving strategy in the field of immuno-oncology. The precision of these targeted cellular therapies is driven by the specificity of the antigen recognition element (the "binder") encoded in the CAR. This binder redirects these immune effector cells precisely toward a defined antigen on the surface of cancer cells, leading to T-cell receptor-independent tumor lysis. Currently, for tumor targeting most CAR-T cells are designed using single-chain variable fragments (scFvs) derived from murine or human immunoglobulins. However, there are several emerging alternative binder modalities that are finding increasing utility for improved CAR function beyond scFvs. METHODS: Here we review the most recent developments in the use of non-canonical protein binding domains in CAR design, including nanobodies, DARPins, natural ligands, and de novo-designed protein elements. RESULTS: Overall, we describe how new protein binder formats, with their unique structural properties and mechanisms of action, may possess key advantages over traditional scFv CAR designs. CONCLUSIONS: These alternative binder designs may contribute to enhanced CAR-T therapeutic options and, ultimately, improved outcomes for cancer patients.
Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Animais , Neoplasias/terapia , Neoplasias/imunologia , Linfócitos T/imunologia , Anticorpos de Cadeia Única/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos de Neoplasias/imunologia , Anticorpos de Domínio Único/imunologiaRESUMO
The CD38-targeting monoclonal antibodies (CD38 mAbs) are well-established therapies in multiple myeloma (MM), but responses to treatment are not always deep or durable. Natural killer (NK) cells deficient in Fc epsilon receptor gamma subunits, known as g-NK cells, are found in higher numbers among individuals exposed to cytomegalovirus (CMV) and are able to potentiate the efficacy of daratumumab in vivo. Here, we present a single-centre, retrospective analysis of 136 patients with MM with known CMV serostatus who received a regimen containing a CD38 mAb (93.4% daratumumab and 6.6% isatuximab). CMV seropositivity was associated with an increased overall response rate to treatment regimens containing a CD38 mAb (odds ratio 2.65, 95% confidence interval [CI] 1.17-6.02). However, CMV serostatus was associated with shorter time to treatment failure in a multivariate Cox model (7.8 vs. 8.8 months in the CMV-seropositive vs. CMV-seronegative groups respectively, log-rank p = 0.18, hazard ratio 1.98, 95% CI 1.25-3.12). Our data suggest that CMV seropositivity may predict better response to CD38 mAbs, although this did not correspond to longer time to treatment failure. Larger studies directly quantitating g-NK cells are required to fully understand their effect on CD38 mAb efficacy in MM.
Assuntos
Infecções por Citomegalovirus , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Estudos Retrospectivos , Citomegalovirus , ADP-Ribosil Ciclase 1 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Infecções por Citomegalovirus/tratamento farmacológicoRESUMO
An essential mechanism for severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here, we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest-affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human immunoglobulin crystallizable fragment (Fc) domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2-pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50s) in the 10- to 100-ng/mL range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-using coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated from convalescent patients.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Desenho de Fármacos , Engenharia de Proteínas/métodos , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Antivirais/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Mutação , Biblioteca de Peptídeos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
Pancreatic cancer typically spreads rapidly and has poor survival rates. Here, we report that the calcium-activated chloride channel TMEM16A is a biomarker for pancreatic cancer with a poor prognosis. TMEM16A is up-regulated in 75% of cases of pancreatic cancer and high levels of TMEM16A expression are correlated with low patient survival probability. TMEM16A up-regulation is associated with the ligand-dependent EGFR signaling pathway. In vitro, TMEM16A is required for EGF-induced store-operated calcium entry essential for pancreatic cancer cell migration. TMEM16A also has a profound impact on phosphoproteome remodeling upon EGF stimulation. Moreover, molecular actors identified in this TMEM16A-dependent EGFR-induced calcium signaling pathway form a gene set that makes it possible not only to distinguish neuro-endocrine tumors from other forms of pancreatic cancer, but also to subdivide the latter into three clusters with distinct genetic profiles that could reflect their molecular underpinning.
Assuntos
Anoctamina-1/metabolismo , Biomarcadores Tumorais/metabolismo , Sinalização do Cálcio , Carcinoma Ductal Pancreático/patologia , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/patologia , Anoctamina-1/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/mortalidade , Prognóstico , RNA Interferente Pequeno/metabolismo , RNA-Seq , Taxa de Sobrevida , Regulação para CimaRESUMO
Targeting aberrant protein homeostasis (proteostasis) in cancer is an attractive therapeutic strategy. However, this approach has thus far proven difficult to bring to clinical practice, with one major exception: proteasome inhibition. These small molecules have dramatically transformed outcomes for patients with the blood cancer multiple myeloma. However, these agents have failed to make an impact in more common solid tumors. Major questions remain about whether this therapeutic strategy can be extended to benefit even more patients. Here we discuss the role of the proteasome in normal and tumor cells, the basic, preclinical, and clinical development of proteasome inhibitors, and mechanisms proposed to govern both intrinsic and acquired resistance to these drugs. Years of study of both the mechanism of action and modes of resistance to proteasome inhibitors reveal these processes to be surprisingly complex. Here, we attempt to draw lessons from experience with proteasome inhibitors that may be relevant for other compounds targeting proteostasis in cancer, as well as extending the reach of proteasome inhibitors beyond blood cancers.
Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteostase/efeitos dos fármacos , Animais , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Neoplasias/enzimologia , Neoplasias/patologiaRESUMO
We describe an overgrowth condition associated with X-linked copy number variation. Three brothers displayed an overgrowth pattern at birth that continued postnatally. Clinical findings included macrocephaly, distinctive facial features, developmental delay and variable clubfoot. Normal fetal growth was noted until the third trimester by Hadlock standards, revealing a late gestational overgrowth pattern. Microarray analysis in the family showed a maternally inherited 680 kb copy number duplication at Xq26.1-q26.2 in all three brothers. Molecular sequencing for known overgrowth conditions including GPC3, Sotos 1 (NSD1), Malan (NFIX), Perlman (DIS3L2), Weaver (EZH2), Opitz-Kaveggia (MED12) loci were negative. BWS IC1 and IC2 methylation and CDKN1C testing was also negative. Normal IGF1 levels excluded X-linked acrogiantism. The duplicated region Xq26.1-q26.2 contained IGSF1 and at least part of the lncRNA FIRRE. IGSF1, a highly expressed pituitary immunoglobulin superfamily gene, was recently implicated in a genome-wide association study of canine size. IGSF1 variants were associated with large canine breeds compared to smaller breeds. Our findings support the hypothesis that an X-linked variant encompassing the IGSF1 region may be associated with body size. Although IGSF1 loss has been noted in human hypothyroidism, this is the first reported phenotype in a family with copy number duplication in the region. Our findings suggest that prenatal evaluation, cross-species evaluation, Mendelian, and GWAS studies may describe a distinctive familial condition and its corresponding phenotypic features.
Assuntos
Variações do Número de Cópias de DNA , Transtornos do Crescimento/genética , Pré-Escolar , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Standard clinical interpretation of DNA copy number variants (CNVs) identified by cytogenomic microarray involves examining protein-coding genes within the region and comparison to other CNVs. Emerging basic research suggests that CNVs can also exert a pathogenic effect through disruption of DNA structural elements such as topologically associated domains (TADs). To begin to integrate these discoveries with current practice, we developed ClinTAD, a free browser-based tool to assist with interpretation of CNVs in the context of TADs ( www.clintad.com ). We used ClinTAD to examine 209 randomly selected single-nucleotide polymorphism microarray cases with a total of 236 CNVs. We compared 118 CNVs classified as variants of uncertain clinical significance (VUS), where additional insight into pathogenicity of these CNVs would be of greatest utility, to 118 CNVs classified as benign. We found that a higher proportion of VUS had at least two genes in a nearby TAD related to a phenotype seen in the patient based on Human Phenotype Ontology (HPO) annotation. We present example cases demonstrating scenarios where ClinTAD may either increase or decrease clinical suspicion of pathogenicity for VUS, depending on disruption of TAD boundaries and HPO phenotype match. ClinTAD is an easy-to-use tool, based on emerging research in chromatin architecture, that can help inform CNV interpretation.
Assuntos
Variações do Número de Cópias de DNA , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Interface Usuário-Computador , Feminino , Humanos , MasculinoRESUMO
Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events.
Assuntos
Caspases/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo , Especificidade por SubstratoRESUMO
The myeloma bone marrow microenvironment promotes proliferation of malignant plasma cells and resistance to therapy. Activation of JAK/STAT signaling is thought to be a central component of these microenvironment-induced phenotypes. In a prior drug repurposing screen, we identified tofacitinib, a pan-JAK inhibitor Food and Drug Administration (FDA) approved for rheumatoid arthritis, as an agent that may reverse the tumor-stimulating effects of bone marrow mesenchymal stromal cells. Herein, we validated in vitro, in stromal-responsive human myeloma cell lines, and in vivo, in orthotopic disseminated xenograft models of myeloma, that tofacitinib showed efficacy in myeloma models. Furthermore, tofacitinib strongly synergized with venetoclax in coculture with bone marrow stromal cells but not in monoculture. Surprisingly, we found that ruxolitinib, an FDA approved agent targeting JAK1 and JAK2, did not lead to the same anti-myeloma effects. Combination with a novel irreversible JAK3-selective inhibitor also did not enhance ruxolitinib effects. Transcriptome analysis and unbiased phosphoproteomics revealed that bone marrow stromal cells stimulate a JAK/STAT-mediated proliferative program in myeloma cells, and tofacitinib reversed the large majority of these pro-growth signals. Taken together, our results suggest that tofacitinib reverses the growth-promoting effects of the tumor microenvironment. As tofacitinib is already FDA approved, these results can be rapidly translated into potential clinical benefits for myeloma patients.
Assuntos
Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Reposicionamento de Medicamentos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Animais , Comunicação Celular , Modelos Animais de Doenças , Humanos , Janus Quinases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mieloma Múltiplo/metabolismo , Fosfoproteínas/metabolismo , Piperidinas/administração & dosagem , Plasmócitos/metabolismo , Plasmócitos/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteoma , Proteômica/métodos , Pirimidinas/administração & dosagem , Pirróis/administração & dosagem , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
It is known that many chemotherapeutics induce cellular apoptosis over hours to days. During apoptosis, numerous cellular proteases are activated, most canonically the caspases. We speculated that detection of proteolytic fragments released from apoptotic cells into the peripheral blood may serve as a unique indicator of chemotherapy-induced cell death. Here we used an enzymatic labeling process to positively enrich free peptide α-amines in the plasma of hematologic malignancy patients soon after beginning treatment. This N-terminomic approach largely avoids interference by high-abundance proteins that complicate traditional plasma proteomic analyses. Significantly, by mass spectrometry methods, we found strong biological signatures of apoptosis directly in the postchemotherapy plasma, including numerous caspase-cleaved peptides as well as relevant peptides from apoptotic and cell-stress proteins second mitochondria-derived activator of caspases, HtrA serine peptidase 2, and activating transcription factor 6. We also treated hematologic cancer cell lines with clinically relevant chemotherapeutics and monitored proteolytic fragments released into the media. Remarkably, many of these peptides coincided with those found in patient samples. Overall, we identified 153 proteolytic peptides in postchemotherapy patient plasma as potential indicators of cellular apoptosis. Through targeted quantitative proteomics, we verified that many of these peptides were indeed increased post- vs. prechemotherapy in additional patients. Our findings reveal that numerous proteolytic fragments are released from dying tumor cells. Monitoring posttreatment proteolysis may lead to a novel class of inexpensive, rapid biomarkers of cell death.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/sangue , Fragmentos de Peptídeos/sangue , Proteólise/efeitos dos fármacos , Fator 6 Ativador da Transcrição/sangue , Ensaio de Imunoadsorção Enzimática , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Espectrometria de Massas , Proteínas Mitocondriais/sangue , Serina Endopeptidases/sangueRESUMO
To facilitate our understanding of proteome dynamics during signaling events, robust workflows affording fast time resolution without confounding factors are essential. We present Surface-exposed protein Labeling using PeroxidaSe, H2O2, and Tyramide-derivative (SLAPSHOT) to label extracellularly exposed proteins in a rapid, specific, and sensitive manner. Simple and flexible SLAPSHOT utilizes recombinant soluble APEX2 protein applied to cells, thus circumventing the engineering of tools and cells, biological perturbations, and labeling biases. We applied SLAPSHOT and quantitative proteomics to examine the TMEM16F-dependent plasma membrane remodeling in WT and TMEM16F KO cells. Time-course data ranging from 1 to 30 min of calcium stimulation revealed co-regulation of known protein families, including the integrin and ICAM families, and identified proteins known to reside in intracellular organelles as occupants of the freshly deposited extracellularly exposed membrane. Our data provide the first accounts of the immediate consequences of calcium signaling on the extracellularly exposed proteome.
Assuntos
Anoctaminas , Cálcio , Membrana Celular , Proteoma , Proteoma/metabolismo , Membrana Celular/metabolismo , Cálcio/metabolismo , Anoctaminas/metabolismo , Anoctaminas/genética , Animais , Proteômica/métodos , Humanos , Camundongos , Fosfolipídeos/metabolismo , Sinalização do Cálcio , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Peróxido de Hidrogênio/metabolismoRESUMO
Objectives: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathologic finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown. Methods: We present the case of a child with pharmacoresistant epilepsy who underwent epileptic focus resections at age 3 and 5 years and was found to have mosaic chr1q gain and HPA. We performed single-nuclei RNA sequencing (snRNA-seq) of brain tissue from the second resection. Results: snRNA-seq showed increased expression of chr1q genes specifically in subsets of neurons and astrocytes. Differentially expressed genes associated with inferred chr1q gain included AKT3 and genes associated with cell adhesion or migration. A subpopulation of astrocytes demonstrated marked enrichment for synapse-associated transcripts, possibly linked to the astrocytic inclusions observed in HPA. Discussion: snRNA-seq may be used to infer the cell-type specificity of mosaic chromosomal copy number changes and identify associated gene expression alterations, which in the case of chr1q gain may involve aberrations in cell migration. Future studies using spatial profiling could yield further insights on the molecular signatures of HPA.
RESUMO
PURPOSE: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN: In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS: [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS: Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.
Assuntos
Mieloma Múltiplo , Masculino , Humanos , Animais , Camundongos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/tratamento farmacológico , Medicina de Precisão , Actínio , Radioisótopos , Compostos Radiofarmacêuticos , Zircônio , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anticorpos , Proteína Cofatora de MembranaRESUMO
Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface antigens that could be targeted by antibodies and chimeric antigen receptor-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal tissue samples (from the Genotype-Tissue Expression project), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.
Assuntos
Glioblastoma , Glioma , Humanos , Processamento Alternativo , Antígenos de Superfície , Glioma/genética , Antígenos de Histocompatibilidade , RNA , Antígenos de Neoplasias/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a ReceptoresRESUMO
Thalamic dysfunction has been implicated in multiple psychiatric disorders. We sought to study the mechanisms by which abnormalities emerge in the context of the 22q11.2 microdeletion, which confers significant genetic risk for psychiatric disorders. We investigated early stages of human thalamus development using human pluripotent stem cell-derived organoids and show that the 22q11.2 microdeletion underlies widespread transcriptional dysregulation associated with psychiatric disorders in thalamic neurons and glia, including elevated expression of FOXP2. Using an organoid co-culture model, we demonstrate that the 22q11.2 microdeletion mediates an overgrowth of thalamic axons in a FOXP2-dependent manner. Finally, we identify ROBO2 as a candidate molecular mediator of the effects of FOXP2 overexpression on thalamic axon overgrowth. Together, our study suggests that early steps in thalamic development are dysregulated in a model of genetic risk for schizophrenia and contribute to neural phenotypes in 22q11.2 deletion syndrome.