Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sports Sci ; 41(1): 1-7, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37002685

RESUMO

Our aim was to characterize fluid intake during outdoor team sport training and use generalized additive models to quantify interactions with the environment and performance. Fluid intake, body mass (BM) and internal/external training load data were recorded for male rugby union (n = 19) and soccer (n = 19) athletes before/after field training sessions throughout an 11-week preseason (357 observations). Running performance (GPS) and environmental conditions were recorded each session and generalized additive models were applied in the analysis of data. Mean body mass loss throughout all training sessions was -1.11 ± 0.63 kg (~1.3%) compared with a mean fluid intake at each session of 958 ± 476 mL during the experimental period. For sessions >110 min, when fluid intake reached ~10-19 mL·kg-1 BM the total distance increased (7.47 to 8.06 km, 7.6%; P = 0.049). Fluid intake above ~10 mL·kg-1 BM was associated with a 4.1% increase in high-speed running distance (P < 0.0001). Most outdoor team sport athletes fail to match fluid loss during training, and fluid intake is a strong predictor of running performance. Improved hydration practices during training should be beneficial and we provide a practical ingestion range to promote improved exercise capacity in outdoor team sport training sessions.


Assuntos
Desempenho Atlético , Futebol , Humanos , Masculino , Esportes de Equipe , Estações do Ano , Ingestão de Líquidos , Desidratação/prevenção & controle
2.
Int J Sports Physiol Perform ; : 1-7, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168462

RESUMO

PURPOSE: Maximal speed is an important physical-fitness attribute for female Australian footballers. The effects of sprint training, maximal strength, and technical training have been reported in laboratory studies. However, no study has determined the combined effect and relative contribution of these training modalities on maximal speed adaptation in situ. Therefore, the aim of this study was to determine the training factors affecting maximal speed adaptation during a preseason in subelite female Australian Rules footballers. METHODS: Maximal speed during field training, predicted 1-repetition maximum (1RM) for box squat and hip thrust, and sprint biomechanics were assessed during early and late preseason (∼9 wk apart) in 15 female subelite Australian Rules Football players (age 20 [3] y). On-field training volume and intensity (total distance, high-speed running, very-high-speed running, and maximal speed) were determined using a Global Positioning System. A multivariate regression model was used to determine the factors associated with changes in maximal speed across the preseason. RESULTS: The preseason training program had a small effect on maximal speed and large to very large effects on strength and sprint biomechanics. The multivariate regression with the greatest fit (P < .001, R2 = .939) included change in estimated 1RM box squat (ß = -0.63), total distance per week (ß = -0.55), and change in hip projection (ß = 0.16) as factors. Multivariate regression of biomechanical factors (P = .044, R2 = .717) and maximal strength factors (P = .003, R2 = .676) were also significant. CONCLUSION: The development of maximal speed across a preseason is dependent on (1) total distance per week, (2) maximal strength adaptation, and (3) sprint technique adaptation in female subelite Australian rules football players.

3.
Children (Basel) ; 10(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36832341

RESUMO

Talent-identified male and female athletes are assumed to have greater speed and power than the general population at a given age. However, a comparison of the jump and sprint performance of an Australian cohort of male and female youth athletes from various sports to age-matched controls has not occurred. Therefore, the aim of this study was to compare anthropometric and physical performance markers between ~13-year-old talent-identified youth athletes and general population Australian youth. The anthropometry and physical performance in talent-identified youth athletes (n = 136, 83 males) and general population youth (n = 250, 135 males) were tested during the first month of the school year in an Australian high school within a specialized sports academy. Talent-identified females were taller (p < 0.001; d = 0.60), sprinted faster (20 m: p < 0.001; d = -1.16), and jumped higher (p < 0.001; d = 0.88) than general population youth females. Similarly, talent-identified males sprinted faster (20 m: p < 0.001; d = -0.78) and jumped higher (p < 0.001; d = 0.87) than general population youth males, but were not taller (p = 0.13; d = 0.21). Body mass was not different between groups for males (p = 0.310) or females (p = 0.723). Overall, youth, particularly females, who are trained in a variety of sports, exhibit greater speed and power during early adolescence compared to their age-matched peers, with anthropometric differences only occurring in females at 13 years of age. Whether talented athletes are selected because they exhibit these traits or whether speed and power are developed through sport participation requires further investigation.

4.
Int J Sports Physiol Perform ; 17(6): 917-925, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240576

RESUMO

PURPOSE: The effect of acetaminophen (ACT, also known as paracetamol) on endurance performance in hot and humid conditions has been shown previously in recreationally active populations. The aim of this study was to determine the effect of ACT on physiological and perceptual variables during steady-state and time-trial cycling performance of trained triathletes in hot and humid conditions. METHODS: In a randomized, double-blind crossover design, 11 triathletes completed ∼60 minutes steady-state cycling at 63% peak power output followed by a time trial (7 kJ·kg body mass-1, ∼30 min) in hot and humid conditions (∼30°C, ∼69% relative humidity) 60 minutes after consuming either 20 mg·kg body mass-1 ACT or a color-matched placebo. Time-trial completion time, gastrointestinal temperature, skin temperature, thermal sensation, thermal comfort, rating of perceived exertion, and fluid balance were recorded throughout each session. RESULTS: There was no difference in performance in the ACT trial compared with placebo (P = .086, d = 0.57), nor were there differences in gastrointestinal and skin temperature, thermal sensation and comfort, or fluid balance between trials. CONCLUSION: In conclusion, there was no effect of ACT (20 mg·kg body mass-1) ingestion on physiology, perception, and performance of trained triathletes in hot and humid conditions, and existing precooling and percooling strategies appear to be more appropriate for endurance cycling performance in the heat.


Assuntos
Acetaminofen , Desempenho Atlético , Ciclismo , Temperatura Alta , Umidade , Acetaminofen/farmacologia , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA