Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1833(11): 2392-402, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23481039

RESUMO

Co-translational protein targeting to the endoplasmic reticulum (ER), represents an evolutionary-conserved mechanism to target proteins into the secretory pathway. In this targeting pathway proteins possessing signal sequences are recognised at the ribosome by the signal recognition particle while they are still undergoing synthesis. This triggers their delivery to the ER protein translocation channel, where they are directly translocated into the ER. Here we review the current understanding of this translocation pathway and how molecular details obtained in the related bacterial system have provided insight into the mechanism of targeting and translocation. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Partícula de Reconhecimento de Sinal , Animais , Humanos , Biossíntese de Proteínas , Transporte Proteico
2.
J Biol Chem ; 285(42): 32671-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709746

RESUMO

Protein translocation across the endoplasmic reticulum membrane occurs at the Sec61 translocon. This has two essential subunits, the channel-forming multispanning membrane protein Sec61p/Sec61α and the tail-anchored Sss1p/Sec61γ, which has been proposed to "clamp" the channel. We have analyzed the function of Sss1p using a series of domain mutants and found that both the cytosolic and transmembrane clamp domains of Sss1p are essential for protein translocation. Our data reveal that the cytosolic domain is required for Sec61p interaction but that the transmembrane clamp domain is required to complete activation of the translocon after precursor targeting to Sec61p.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Canais de Translocação SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
3.
Glycobiology ; 19(12): 1408-16, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19542522

RESUMO

Glucosidase II (GluII) is a glycan-trimming enzyme active on nascent glycoproteins in the endoplasmic reticulum (ER). It trims the middle and innermost glucose residues (Glc2 and Glc1) from N-linked glycans. The monoglucosylated glycan produced by the first GluII trimming reaction is recognized by calnexin/calreticulin and serves as the signal for entry into this folding pathway. GluII is a heterodimer of alpha and beta subunits corresponding to yeast Gls2p and Gtb1p, respectively. While Gls2p contains the glucosyl hydrolase active site, the Gtb1p subunit has previously been shown to be essential for the Glc1 trimming event. Here we demonstrate that Gtb1p also determines the rate of Glc2 trimming. In order to further dissect these activities we mutagenized a number of conserved residues across the protein. Our data demonstrate that both the MRH and G2B domains of Gtb1p contribute to the Glc2 trimming event but that the MRH domain is essential for Glc1 trimming.


Assuntos
Metabolismo dos Carboidratos/genética , Glucose/metabolismo , Polissacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , alfa-Glucosidases/fisiologia , Sequência de Aminoácidos , Metabolismo dos Carboidratos/efeitos dos fármacos , Sequência de Carboidratos , Domínio Catalítico/genética , Glicoproteínas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Organismos Geneticamente Modificados , Processamento de Proteína Pós-Traducional/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Leveduras , alfa-Glucosidases/química , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
4.
Mol Biol Cell ; 15(1): 1-10, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14617809

RESUMO

Posttranslational translocation of prepro-alpha-factor (ppalphaF) across the yeast endoplasmic reticulum membrane begins with the binding of the signal sequence to the Sec complex, a membrane component consisting of the trimeric Sec61p complex and the tetrameric Sec62p/63p complex. We show by photo-cross-linking that the signal sequence is bound directly to a site where it contacts simultaneously Sec61p and Sec62p, suggesting that there is a single signal sequence recognition step. We found no evidence for the simultaneous contact of the signal sequence with two Sec61p molecules. To identify transmembrane segments of Sec61p that line the actual translocation pore, a late translocation intermediate of ppalphaF was generated with photoreactive probes incorporated into the mature portion of the polypeptide. Cross-linking to multiple regions of Sec61p was observed. In contrast to the signal sequence, neighboring positions of the mature portion of ppalphaF had similar interactions with Sec61p. These data suggest that the channel pore is lined by several transmembrane segments, which have no significant affinity for the translocating polypeptide chain.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Compartimento Celular , Clonagem Molecular , Retículo Endoplasmático , Membranas Intracelulares/metabolismo , Fator de Acasalamento , Mutação , Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína/fisiologia , Canais de Translocação SEC
5.
J Biol Chem ; 281(10): 6325-33, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16373354

RESUMO

Glucosidase II is essential for sequential removal of two glucose residues from N-linked glycans during glycoprotein biogenesis in the endoplasmic reticulum. The enzyme is a heterodimer whose alpha-subunit contains the glycosyl hydrolase active site. The function of the beta-subunit has yet to be defined, but mutations in the human gene have been linked to an autosomal dominant form of polycystic liver disease. Here we report the identification and characterization of a Saccharomyces cerevisiae gene, GTB1, encoding a polypeptide with 21% sequence similarity to the beta-subunit of human glucosidase II. The Gtb1 protein was shown to be a soluble glycoprotein (96-102 kDa) localized to the endoplasmic reticulum lumen where it was present in a complex together with the yeast alpha-subunit homologue Gls2p. Surprisingly, we found that Deltagtb1 mutant cells were specifically defective in the processing of monoglucosylated glycans. Thus, although Gls2p is sufficient for cleavage of the penultimate glucose residue, Gtb1p is essential for cleavage of the final glucose. Our data demonstrate that Gtb1p is required for normal glycoprotein biogenesis and reveal that the final two glucose-trimming steps in N-glycan processing are mechanistically distinct.


Assuntos
Retículo Endoplasmático/enzimologia , Glicoproteínas/biossíntese , Processamento de Proteína Pós-Traducional/fisiologia , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , alfa-Glucosidases/genética , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Mutação , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Subunidades Proteicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência , alfa-Glucosidases/fisiologia
6.
J Biol Chem ; 281(12): 7899-906, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16368690

RESUMO

Protein translocation into the endoplasmic reticulum occurs at pore-forming structures known as translocons. In yeast, two different targeting pathways converge at a translocation pore formed by the Sec61 complex. The signal recognition particle-dependent pathway targets nascent precursors co-translationally, whereas the Sec62p-dependent pathway targets polypeptides post-translationally. In addition to the Sec61 complex, both pathways also require Sec63p, an integral membrane protein of the Hsp40 family, and Kar2p, a soluble Hsp70 located in the ER lumen. Using a series of mutant alleles, we demonstrate that a conserved Brl (Brr2-like) domain in the COOH-terminal cytosolic region of Sec63p is essential for function both in vivo and in vitro. We further demonstrate that this domain is required for assembly of two oligomeric complexes of 350 and 380 kDa, respectively. The larger of these corresponds to the heptameric "SEC complex" required for post-translational translocation. However, the 350-kDa complex represents a newly defined hexameric SEC' complex comprising Sec61p, Sss1p, Sbh1p, Sec63p, Sec71p, and Sec72p. Our data indicate that the SEC' complex is required for co-translational protein translocation across the yeast ER membrane.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Membrana Transportadoras/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Alelos , Membrana Celular/metabolismo , Citosol/química , Citosol/metabolismo , DNA/química , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Imunoprecipitação , Microssomos/metabolismo , Modelos Genéticos , Oligonucleotídeos/química , Ligação Proteica , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , RNA Helicases , Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA