Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Immunity ; 40(1): 40-50, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24412616

RESUMO

Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.


Assuntos
Interleucina-6/metabolismo , Peritônio/patologia , Peritonite/genética , Peritonite/patologia , Células Th1/imunologia , Doença Aguda , Transferência Adotiva , Animais , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Matriz Extracelular/imunologia , Retroalimentação Fisiológica , Fibrose , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Células Th1/transplante
2.
BMC Musculoskelet Disord ; 20(1): 326, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299941

RESUMO

BACKGROUND: Oestrogen-deficiency induced by menopause is associated with reduced bone density and primary osteoporosis, resulting in an increased risk of fracture. While the exact etiology of menopause-induced primary osteoporotic bone loss is not fully known, members of the tumour necrosis factor super family (TNFSF) are known to play a role. Recent studies have revealed that the TNFSF members death receptor 3 (DR3) and one of its ligands, TNF-like protein 1A (TL1A) have a key role in secondary osteoporosis; enhancing CD14+ peripheral blood mononuclear cell (PBMC) osteoclast formation and bone resorption. Whether DR3 and TL1A contribute towards bone loss in menopause-induced primary osteoporosis however, remains unknown. METHODS: To investigate this we performed flow cytometry analysis of DR3 expression on CD14+ PBMCs isolated from pre- and early post-menopausal females and late post-menopausal osteoporotic patients. Serum levels of TL1A, CCL3 and total MMP-9 were measured by ELISA. In vitro osteoclast differentiation assays were performed to determine CD14+ monocyte osteoclastogenic potential. In addition, splenic CD4+ T cell DR3 expression was investigated 1 week and 8 weeks post-surgery, using the murine ovariectomy model. RESULTS: In contrast to pre-menopausal females, CD14+ monocytes isolated from post-menopausal females were unable to induce DR3 expression. Serum TL1A levels were decreased approx. 2-fold in early post-menopausal females compared to pre-menopausal controls and post-menopausal osteoporotic females; no difference was observed between pre-menopausal and late post-menopausal osteoporotic females. Analysis of in vitro CD14+ monocyte osteoclastogenic potential revealed no significant difference between the post-menopausal and post-menopausal osteoporotic cohorts. Interestingly, in the murine ovariectomy model splenic CD4+ T cell DR3 expression was significantly increased at 1 week but not 8 weeks post-surgery when compared to the sham control. CONCLUSION: Our results reveals for the first time that loss of oestrogen has a significant effect on DR3; decreasing expression on CD14+ monocytes and increasing expression on CD4+ T cells. These data suggest that while oestrogen-deficiency induced changes in DR3 expression do not affect late post-menopausal bone loss they could potentially have an indirect role in early menopausal bone loss through the modulation of T cell activity.


Assuntos
Estrogênios/deficiência , Osteoporose Pós-Menopausa/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Adulto , Idoso , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Menopausa/sangue , Menopausa/fisiologia , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Osteoporose Pós-Menopausa/sangue , Osteoporose Pós-Menopausa/imunologia , Ovariectomia , Adulto Jovem
3.
Rheumatology (Oxford) ; 57(11): 2042-2052, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053130

RESUMO

Objective: Macrophage inflammatory protein 1-alpha (CCL3) is a chemokine that regulates macrophage trafficking to the inflamed joint. The agonistic effect of CCL3 on osteolytic lesions in patients with multiple myeloma is recognized; however, its role in skeletal damage during inflammatory arthritis has not been established. The aim of the study was to explore the role of osteoclast-associated CCL3 upon bone resorption, and to test its pharmacological blockade for protecting against bone pathology during inflammatory arthritis. Methods: CCL3 production was studied during osteoclast differentiation from osteoclast precursor cells: human CD14-positive mononuclear cells. Mice with CIA were treated with an anti-CCL3 antibody. The effect of CCL3 blockade through mAb was studied through osteoclast number, cytokine production and bone resorption on ivory disks, and in vivo through CIA progression (clinical score, paw diameter, synovial inflammation and bone damage). Results: Over time, CCL3 increased in parallel with the number of osteoclasts in culture. Anti-CCL3 treatment achieved a concentration-dependent inhibition of osteoclast fusion and reduced pit formation on ivory disks (P ⩽ 0.05). In CIA, anti-CCL3 treatment reduced joint damage and significantly decreased multinucleated tartrate-resistant acid phosphatase-positive osteoclasts and erosions in the wrists (P < 0.05) and elbows (P < 0.05), while also reducing joint erosions in the hind (P < 0.01) and fore paws (P < 0.01) as confirmed by X-ray. Conclusion: Inhibition of osteoclast-associated CCL3 reduced osteoclast formation and function whilst attenuating arthritis-associated bone loss and controlling development of erosion in murine joints, thus uncoupling bone damage from inflammation. Our findings may help future innovations for the diagnosis and treatment of inflammatory arthritis.


Assuntos
Artrite Experimental/metabolismo , Reabsorção Óssea/metabolismo , Quimiocina CCL3/metabolismo , Osteoclastos/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos
4.
Am J Pathol ; 186(11): 2813-2823, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27664471

RESUMO

Death receptor 3 (DR3; TNFRSF25) and its tumor necrosis factor-like ligand TL1A (TNFSF15) control several processes in inflammatory diseases through the expansion of effector T cells and the induction of proinflammatory cytokines from myeloid and innate lymphoid cells. Using wild-type (DR3+/+) and DR3-knockout (DR3-/-) mice, we show that the DR3/TL1A pathway triggers the release of multiple chemokines after acute peritoneal inflammation initiated by a single application of Staphylococcus epidermidis supernatant, correlating with the infiltration of multiple leukocyte subsets. In contrast, leukocyte infiltration was not DR3 dependent after viral challenge with murine cytomegalovirus. DR3 expression was recorded on connective tissue stroma, which provided DR3-dependent release of chemokine (C-C motif) ligand (CCL) 2, CCL7, CXCL1, and CXCL13. CCL3, CCL4, and CXCL10 production was also DR3 dependent, but quantitative RT-PCR showed that their derivation was not stromal. In vitro cultures identified resident macrophages as a DR3-dependent source of CCL3. Whether DR3 signaling could contribute to a related peritoneal pathology was then tested using multiple applications of S. epidermidis supernatant, the repetitive inflammatory episodes of which lead to peritoneal membrane thickening and collagen deposition. Unlike their DR3+/+ counterparts, DR3-/- mice did not develop fibrosis of the mesothelial layer. Thus, this work describes both a novel function and essential requirement for the DR3/TL1A pathway in acute, resolving, and chronic inflammation in the peritoneal cavity.


Assuntos
Inflamação/imunologia , Peritônio/patologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Doença Aguda , Animais , Quimiocinas/metabolismo , Doença Crônica , Epitélio/patologia , Feminino , Fibrose , Humanos , Inflamação/metabolismo , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Peritônio/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Staphylococcus epidermidis/fisiologia , Linfócitos T/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
5.
Ann Rheum Dis ; 74(1): 242-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24130267

RESUMO

OBJECTIVES: Synovial fluid glutamate concentrations increase in arthritis. Activation of kainate (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) increase interleukin-6 (IL-6) release and cause arthritic pain, respectively. We hypothesised that AMPA and KA GluRs are expressed in human arthritis, and that intra-articular NBQX (AMPA/KA GluR antagonist) prevents pain and pathology in antigen-induced arthritis (AIA). METHODS: GluR immunohistochemistry was related to synovial inflammation and degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). A single intra-articular NBQX injection was given at induction, and knee swelling and gait of AIA and AIA+NBQX rats compared over 21 days, before imaging, RT-qPCR, histology and immunohistochemistry of joints. Effects of NBQX on human primary osteoblast (HOB) activity were determined. RESULTS: AMPAR2 and KA1 immunolocalised to remodelling bone, cartilage and synovial cells in human OA and RA, and rat AIA. All arthritic tissues showed degradation and synovial inflammation. NBQX reduced GluR abundance, knee swelling (p<0.001, days 1-21), gait abnormalities (days 1-2), end-stage joint destruction (p<0.001), synovial inflammation (p<0.001), and messenger RNA expression of meniscal IL-6 (p<0.05) and whole joint cathepsin K (p<0.01). X-ray and MRI revealed fewer cartilage and bone erosions, and less inflammation after NBQX treatment. NBQX reduced HOB number and prevented mineralisation. CONCLUSIONS: AMPA/KA GluRs are expressed in human OA and RA, and in AIA, where a single intra-articular injection of NBQX reduced swelling by 33%, and inflammation and degeneration scores by 34% and 27%, respectively, exceeding the efficacy of approved drugs in the same model. AMPA/KA GluR antagonists represent a potential treatment for arthritis.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Reumatoide/imunologia , Comportamento Animal/efeitos dos fármacos , Cartilagem Articular/diagnóstico por imagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-6/metabolismo , Articulação do Joelho/diagnóstico por imagem , Masculino , Meniscos Tibiais/metabolismo , Osteoartrite/imunologia , Osteoblastos , Dor/imunologia , Quinoxalinas/farmacologia , Radiografia , Ratos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/imunologia , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/imunologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia
6.
Eur J Immunol ; 43(10): 2613-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857287

RESUMO

Balancing the generation of immune responses capable of controlling virus replication with those causing immunopathology is critical for the survival of the host and resolution of influenza-induced inflammation. Based on the capacity of interleukin-6 (IL-6) to govern both optimal T-cell responses and inflammatory resolution, we hypothesised that IL-6 plays an important role in maintaining this balance. Comparison of innate and adaptive immune responses in influenza-infected wild-type control and IL-6-deficient mice revealed striking differences in virus clearance, lung immunopathology and generation of heterosubtypic immunity. Mice lacking IL-6 displayed a profound defect in their ability to mount an anti-viral T-cell response. Failure to adequately control virus was further associated with an enhanced infiltration of inflammatory monocytes into the lung and an elevated production of the pro-inflammatory cytokines, IFN-α and TNF-α. These events were associated with severe lung damage, characterised by profound vascular leakage and death. Our data highlight an essential role for IL-6 in orchestrating anti-viral immunity through an ability to limit inflammation, promote protective adaptive immune responses and prevent fatal immunopathology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vírus da Influenza A/fisiologia , Interleucina-6/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Animais , Linfócitos T CD4-Positivos/virologia , Movimento Celular/genética , Células Cultivadas , Citocinas/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Pneumonia Viral/genética , Pneumonia Viral/patologia , Carga Viral/genética , Replicação Viral/genética
7.
Methods Mol Biol ; 2691: 123-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355542

RESUMO

Immune-mediated inflammatory diseases (IMIDs) are commonly associated with complex coexisting conditions, and cardiovascular comorbidities are a common cause of mortality in systemic inflammation. Experimental models of disease provide an opportunity to dissect inflammatory mechanisms that promote damage to vascular tissues affected by comorbidity. Here, we describe methods to recover the thoracic aorta from mice during experimental inflammatory arthritis and assess vascular constriction responses by isometric tension myography. To complement the assessment of functional changes in the vasculature during inflammatory arthritis, we also outline a method to characterize vascular inflammation by immunohistochemistry.


Assuntos
Artrite Experimental , Doenças Cardiovasculares , Animais , Camundongos , Comorbidade , Inflamação/complicações , Aorta Torácica , Artrite Experimental/complicações , Doenças Cardiovasculares/etiologia
8.
FASEB J ; 25(1): 409-19, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20826539

RESUMO

Tumor necrosis factor (TNF)-like cytokine (TL1A) is a T-cell costimulator that bolsters cytokine-induced activation through death receptor 3 (DR3). To explore the relationship between T-cell activation and TL1A responsiveness, flow cytometry profiled DR3 expression in resting and activated T cells. In human CD4(+) T cells, DR3 was induced rapidly following activation and expressed prominently by interleukin (IL)-17-secreting T cells (Th17). Splenic T cells from wild-type and DR3-deficient mice showed that TL1A activation of DR3 inhibits Th17 generation (81 ± 2.6% at 100 ng/ml TL1A) from naive T cells. This response was not associated with suppression of T-cell proliferation. Using neutralizing antibodies or T cells derived from genetically modified mice, TL1A inhibition of Th17 development was found to be independent of IL-2, IL-27, γIFN, IFNAR1, and STAT1. Under suboptimal TCR activation, TL1A continued to block IL-17A secretion, however, the reduced threshold of TCR engagement was now linked with an increase in TL1A-driven proliferation. In contrast, fully committed Th17 cells displayed an altered TL1A responsiveness and in the absence of TCR costimulation supported the maintenance of T cell IL-17A expression. Consequently, TL1A orchestrates unique outcomes in naive and effector T-helper cells, which may affect the proliferation, differentiation and maintenance of Th17 cells in peripheral compartments and inflamed tissues.


Assuntos
Proliferação de Células/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Humanos , Interleucina-17/metabolismo , Interleucina-2/metabolismo , Interleucinas/farmacologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Knockout , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Fator de Crescimento Transformador beta/farmacologia
9.
Arthritis Rheum ; 63(7): 1866-77, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21400478

RESUMO

OBJECTIVE: To assess the ability of pre-B cell colony-enhancing factor (PBEF) to regulate inflammation and degradative processes in inflammatory arthritis, using the small molecule inhibitor APO866 in human fibroblasts in vitro and in murine collagen-induced arthritis (CIA). METHODS: Enzyme-linked immunosorbent assays were used to examine regulation of expression of metalloproteinases and chemokines in human fibroblasts. The role of PBEF was further examined using APO866 in mice with CIA, with effects on disease activity assessed using radiography, histology, in vivo imaging, and quantitative polymerase chain reaction (qPCR). RESULTS: In vitro activation of human fibroblasts with PBEF promoted expression of matrix metalloproteinase 3 (MMP-3), CCL2, and CXCL8, an effect inhibited by APO866. In mice with CIA, early intervention with APO866 inhibited synovial inflammation, including chemokine-directed leukocyte infiltration, and reduced a systemic marker of inflammation, serum hyaluronic acid. APO866 blockade led to reduced expression of MMP-3 and MMP-13 in joint extracts and to a reduction in a systemic marker of cartilage erosion, serum cartilage oligomeric matrix protein. Radiologic images revealed that APO866 protected against bone erosion, while qPCR demonstrated inhibition of RANKL expression. In mice with established disease, APO866 reduced synovial inflammation and cartilage destruction, and halted bone erosion. In addition, APO866 reduced the activity of MMP-3, CCL2, and RANKL in vivo, and inhibited production of CCL2 and RANKL in synovial explants from arthritic mice, a result that was reversed with nicotinamide mononucleotide. CONCLUSION: These findings confirm PBEF to be an important regulator of inflammation, cartilage catabolism, and bone erosion, and highlight APO866 as a promising therapeutic agent for targeting PBEF activity in inflammatory arthritis.


Assuntos
Acrilamidas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Cartilagem/metabolismo , Leucócitos/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Piperidinas/uso terapêutico , Acrilamidas/farmacologia , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Piperidinas/farmacologia
10.
J Immunol ; 185(9): 5512-21, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20870936

RESUMO

IL-6-mediated T cell-driven immune responses are associated with signaling occurring through the membrane-bound cognate receptor α-chain (mIL-6Rα). Once formed, IL-6-mIL-6Rα complexes induce the homodimerization and subsequent phosphorylation of the ubiquitously expressed signal-transducing protein, gp130. This signaling event is defined as classical IL-6 signaling. However, many inflammatory processes assigned to IL-6 may be mediated via binding a naturally occurring soluble IL-6Rα, which forms an agonistic complex (IL-6/soluble IL-6Rα) capable of evoking responses on a wide range of cell types that lack mIL-6Rα (IL-6 trans-signaling). To dissect the differential contribution of the two IL-6 signaling pathways in cell-mediated inflammatory processes, we pharmaceutically targeted each using two murine models of human arthritis. Whereas intra-articular neutralization of trans-signaling attenuated local inflammatory responses, the classical pathway was found to be obligate and sufficient to induce pathogenic T cells and humoral responses, leading to systemic disease. Our data illustrate that mechanisms occurring in the secondary lymphoid organs underlying arthropathies are mediated via the classical pathway of IL-6 signaling, whereas trans-signaling contributes only at the local site, that is, in the affected tissues.


Assuntos
Artrite Experimental/imunologia , Autoimunidade/imunologia , Interleucina-6/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Artrite Experimental/metabolismo , Separação Celular , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Interleucina-6/metabolismo , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Receptores de Interleucina-6/imunologia , Receptores de Interleucina-6/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Transfecção
11.
J Immunol ; 184(4): 2130-9, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20083667

RESUMO

IL-6 responses are classically orchestrated via a membrane-bound IL-6R (CD126) alpha subunit (classical IL-6R signaling) or through a soluble form of this cognate receptor (IL-6 trans signaling). Appraisal of IL-6R expression on human and mouse T cells emphasized that IL-6R expression is closely linked with that of CCR7 and CD62L. In this regard, infiltrating effector T cells from clinical and experimental peritonitis episodes lose IL-6R expression, and anti-CD3/CD28 Ab costimulation of peripheral T cells in vitro leads to a downregulation in IL-6R expression. Consequently, IL-6 signaling through membrane-bound IL-6R seems to be limited to naive or central memory T cell populations. Loss of IL-6R expression by activated T cells further suggests that these effector cells might still retain IL-6 responsiveness via IL-6 trans signaling. Using IL-6R-deficient mice and recombinant tools that modulate the capacity of IL-6 to signal via its soluble receptor, we report that local control of IL-6 trans signaling regulates the effector characteristics of the T cell infiltrate and promotes the maintenance of IL-17A-secreting CD4(+) T cells. Therefore, we concluded that classical IL-6R signaling in naive or central memory CD4(+) T cells is required to steer their effector characteristics, whereas local regulation of soluble IL-6R activity might serve to maintain the cytokine profile of the Th cell infiltrate. Therefore, the activation status of a T cell population is linked with an alteration in IL-6 responsiveness.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Mediadores da Inflamação/fisiologia , Interleucina-17/metabolismo , Interleucina-6/fisiologia , Peritonite/imunologia , Receptores de Interleucina-6 , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Movimento Celular/genética , Movimento Celular/imunologia , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Feminino , Humanos , Imunofenotipagem , Mediadores da Inflamação/antagonistas & inibidores , Interleucina-17/biossíntese , Interleucina-6/deficiência , Interleucina-6/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/microbiologia , Peritonite/patologia , Receptores de Interleucina-6/deficiência , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/fisiologia , Transdução de Sinais/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia
12.
J Immunol ; 182(1): 613-22, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19109195

RESUMO

Cytokine control of the synovial infiltrate is a central process in the development of inflammatory arthritis. In this study, we combine genetic approaches and intervention strategies to describe a fundamental requirement for IL-6-mediated STAT3 signaling in orchestrating the inflammatory infiltrate in monoarticular and systemic models of experimental arthritis. STAT3 activation via the common gp130 signal-transducing receptor for all IL-6-related cytokines led to increased retention of neutrophils and T cells within the inflamed synovium, which included STAT3-regulated IL-17A-secreting T cells. Control of leukocyte infiltration was reliant upon IL-6 signaling via its soluble receptor (termed IL-6 trans signaling), as evidenced by selective blockade of this alternative IL-6 signaling pathway using an engineered variant of soluble gp130 (sgp130Fc). This therapeutic intervention led to substantial clinical improvement in mice with emerging or established incidence of systemic arthritis. These data illustrate that IL-6 control of STAT3 is critical for regulating the synovial infiltrate in inflammatory arthritis, and suggest that selective inhibition of IL-6 trans signaling may provide a more refined intervention strategy for blocking IL-6-driven proarthritic activities.


Assuntos
Artrite Experimental/imunologia , Artrite Experimental/terapia , Interleucina-6/fisiologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/imunologia , Animais , Artrite Experimental/patologia , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Interleucina-6/deficiência , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Recidiva , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
13.
J Immunol ; 181(3): 2174-80, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18641356

RESUMO

Although the IL-6-related cytokine oncostatin M (OSM) affects processes associated with disease progression, the specific function of OSM in the face of an inflammatory challenge remains unclear. In this report, a peritoneal model of acute inflammation was used to define the influence of OSM on chemokine-mediated leukocyte recruitment. When compared with wild-type and IL-6-deficient mice, peritoneal inflammation in oncostatin M receptor-beta-deficient (OSMR-KO) mice resulted in enhanced monocytic cell trafficking. In contrast to IL-6-deficient mice, OSMR-KO mice displayed no difference in neutrophil and lymphocyte migration. Subsequent in vitro studies using human peritoneal mesothelial cells and an in vivo appraisal of inflammatory chemokine expression after peritoneal inflammation identified OSM as a prominent regulator of CCL5 expression. Specifically, OSM inhibited IL-1beta-mediated NF-kappaB activity and CCL5 expression in human mesothelial cells. This was substantiated in vivo where peritoneal inflammation in OSMR-KO mice resulted in a temporal increase in both CCL5 secretion and NF-kappaB activation. These findings suggest that IL-6 and OSM individually affect the profile of leukocyte trafficking, and they point to a hitherto unidentified interplay between OSM signaling and the inflammatory activation of NF-kappaB.


Assuntos
Movimento Celular/imunologia , Monócitos/citologia , Monócitos/metabolismo , Subunidade beta de Receptor de Oncostatina M/metabolismo , Transdução de Sinais/imunologia , Doença Aguda , Animais , Células Cultivadas , Quimiocinas/genética , Quimiocinas/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , NF-kappa B/metabolismo , Subunidade beta de Receptor de Oncostatina M/deficiência , Subunidade beta de Receptor de Oncostatina M/genética
14.
JCI Insight ; 5(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544091

RESUMO

Musculoskeletal disorders represent the third greatest burden in terms of death and disability in the developed world. Osteoarthritis is the single greatest cause of chronic pain, has no cure, and affects 8.5 and 27 million people in the UK and US, respectively. Osteoarthritis is most prevalent in older people, but as it commonly occurs after joint injury, young people with such injuries are also susceptible. Painful joints are often treated with steroid or hyaluronic acid (HA) injections, but treatments to prevent subsequent joint degeneration remain elusive. In animals, joint injury increases glutamate release into the joint, acting on nerves to cause pain, and joint tissues to cause inflammation and degeneration. This study investigated synovial fluid glutamate concentrations and glutamate receptor (GluR) expression in injured human joints and compared the efficacy of GluR antagonists with current treatments in a mouse model of injury-induced osteoarthritis (ACL rupture). GluRs were expressed in the ligaments and meniscus after knee injury, and synovial fluid glutamate concentrations ranged from 19 to 129 µM. Intra-articular injection of NBQX (GluR antagonist) at the time of injury substantially reduced swelling and degeneration in the mouse ACL rupture model. HA had no effect, and Depo-Medrone reduced swelling for 1 day but increased degeneration by 50%. Intra-articular administration of NBQX modified both symptoms and disease to a greater extent than current treatments. There is an opportunity for repurposing related drugs, developed for CNS disorders and with proven safety in humans, to prevent injury-induced osteoarthritis. This could quickly reduce the substantial burden associated with osteoarthritis.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Inflamação/tratamento farmacológico , Osteoartrite/prevenção & controle , Adolescente , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Ácido Glutâmico/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Ácido Caínico/metabolismo , Ácido Caínico/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
15.
Mol Immunol ; 45(2): 395-405, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17651804

RESUMO

Despite its vital role in innate immunity, complement is involved in a number of inflammatory pathologies and has therefore become a therapeutic target. Most agents generated for anti-complement therapy have short half-lives in plasma, or have been of mouse or human origin, thereby limiting their use either to murine models of disease or to short-term therapy. Here we describe the generation of a long-acting rat therapeutic agent based on the rat complement inhibitor, Crry. Characterisation of various soluble forms of Crry demonstrated that the amino-terminal four short-consensus repeat domains were required for full regulatory and C3b-binding activities. Fusion of these domains to rat IgG2a Fc generated an effective complement inhibitor (rCrry-Ig) with a circulating half-life prolonged from 7 min for Crry alone to 53 h for rCrry-Ig. Systemic administration of rCrry-Ig over 5 weeks generated a weak immune response to the recombinant agent, however this was predominantly IgM in nature and did not neutralise Crry function or cause clearance of the agent from plasma. Administration of rCrry-Ig completely abrogated clinical disease in a rat model of myasthenia gravis whereas soluble Crry lacking the immunoglobulin Fc domain caused a partial response. rCrry-Ig not only ablated clinical disease, but also prevented C3 and C9 deposition at the neuromuscular junction and inhibited cellular infiltration at this site. The long half-life and low immunogenicity of this agent will be useful for therapy in chronic models of inflammatory disease in the rat.


Assuntos
Antígenos de Superfície/farmacologia , Proteínas Inativadoras do Complemento/farmacologia , Proteínas do Sistema Complemento/imunologia , Imunoglobulina G/farmacologia , Miastenia Gravis Autoimune Experimental/prevenção & controle , Animais , Antígenos de Superfície/sangue , Antígenos de Superfície/imunologia , Antígenos de Superfície/isolamento & purificação , Complemento C3b/imunologia , Feminino , Meia-Vida , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Ratos , Ratos Wistar , Receptores de Superfície Celular/sangue , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/sangue , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Solubilidade/efeitos dos fármacos , Ressonância de Plasmônio de Superfície
16.
Methods Mol Biol ; 1725: 101-118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29322412

RESUMO

In vivo mouse models of inflammatory arthritis are extensively used to investigate pathogenic mechanisms governing inflammation-driven joint damage. Two commonly utilized models include collagen-induced arthritis (CIA) and methylated bovine serum albumin (mBSA) antigen-induced arthritis (AIA). These offer unique advantages for modeling different aspects of human disease. CIA involves breach of immunological tolerance resulting in systemic autoantibody-driven arthritis, while AIA results in local resolving inflammatory flares and articular T cell-mediated damage. Despite limitations that apply to all animal models of human disease, CIA and AIA have been instrumental in identifying pathogenic mediators, immune cell subsets and stromal cell responses that determine disease onset, progression, and severity. Moreover, these models have enabled investigation of disease phases not easily studied in patients and have served as testing beds for novel biological therapies, including cytokine blockers and small molecule inhibitors of intracellular signaling that have revolutionized rheumatoid arthritis treatment.


Assuntos
Antígenos/efeitos adversos , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Inflamação/patologia , Soroalbumina Bovina/imunologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Soroalbumina Bovina/administração & dosagem
17.
J Clin Invest ; 112(4): 598-607, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12925700

RESUMO

Regulated recruitment and clearance of neutrophils (PMN) is the hallmark of competent host defense and resolution of inflammation. We now report that IFN-gamma controls PMN infiltration and modulates IL-6 signaling through its soluble receptor (sIL-6R) to promote their apoptosis and clearance. Induction of peritoneal inflammation in IFN-gamma-deficient (IFN-gamma-/-) mice emphasized that the initial rate of PMN recruitment was impaired. This defect in PMN recruitment was also associated with the suppressed intraperitoneal expression of IL-1beta and IL-6. Reconstitution of IFN-gamma signaling restored the rate of PMN infiltration and IL-6 levels and was accompanied by normalization of PMN-activating CXC chemokine expression. To test whether local IL-6 signaling modulated PMN recruitment, inflammation was induced in IFN-gamma-/- and IL-6-/- mice and cytokine signaling adapted by intraperitoneal sIL-6R-IL-6 fusion protein (HYPER-IL-6) or IFN-gamma. Although HYPER-IL-6 attenuated PMN influx in IFN-gamma-/- mice, IFN-gamma had no effect on PMN infiltration in IL-6-/- mice. Examination of the leukocyte infiltrate from IFN-gamma-/-, IL-6-/-, and wild-type mice showed that apoptosis was aberrant in the absence of IFN-gamma and IL-6 as a result of impaired sIL-6R signaling. These data emphasize a pivotal role for IFN-gamma in regulating innate immunity through control of both the recruitment and clearance phases of PMN trafficking.


Assuntos
Apoptose , Inflamação , Interferon gama/metabolismo , Interleucina-6/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Transdução de Sinais , Animais , Anexina A5/metabolismo , Caspase 3 , Caspases/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Interleucina-1/metabolismo , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peritônio/citologia , Peritônio/imunologia , Propídio/metabolismo , Fatores de Tempo
18.
Adipocyte ; 6(2): 87-101, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28425846

RESUMO

The physiologic function of adipose tissue is altered by the host's inflammatory response; the implications for maintaining human health and regulating inflammation-associated disease progression are ill defined. However, this cannot be investigated in humans, therefore the use of animal models is required. With the aim to determine morphological and molecular alterations to perivascular and organ-associated adipose tissues during inflammatory arthritis, collagen-induced arthritis (CIA) was established in male DBA/1 mice. Emerging evidence from this study signposts CIA in the DBA/1 mouse as a model that is relevant to study the development and treatment of early cardiovascular pathology associated with inflammatory arthritis. Here, we show global morphological changes in adipose tissue and the thoracic aorta in animals induced with CIA compared with the non-immunized controls. In CIA, we concluded that the increased cell count in PVAT was, at least in part, caused by an ingress and/or expansion of macrophages that had a mixed phenotype. A substantial increase of galectin-3 was expressed in PVAT from mice with CIA. Galectin-3 is elevated in the blood of patients with CVDs, however, it has never before been measured in PVAT in rodents or humans. Here, PVAT-associated galectin-3 is identified as a potential biomarker for detecting early vascular pathology in CIA and a promising candidate for translation to RA.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Artrite/complicações , Artrite/imunologia , Artrite Experimental/imunologia , Modelos Animais de Doenças , Galectina 3/metabolismo , Inflamação/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Transdução de Sinais
19.
Bone ; 97: 94-104, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28062298

RESUMO

Reduced bone density and secondary osteoporosis, resulting in increased risk of fracture, is a significant complicating factor in the inflammatory arthritides. While the exact etiology of systemic bone loss is not fully elucidated, recent insights into the tumor necrosis factor super family (TNFSF) revealed a potential role for death receptor 3 (DR3/TNFRSF25) and one of its ligands, TNF-like protein 1A (TL1A/TNFSF15). The mechanisms by which DR3/TL1A signalling modulates bone loss are unclear. We investigated the effect of DR3/TL1A signalling upon osteoclast-dependent chemokine and MMP production to unravel novel mechanisms whereby this pathway regulates OC formation and OC-dependent bone resorption. Collagen induced arthritis (CIA) was established in DR3wt and DR3ko mice, joints were sectioned and analysed histologically for bone damage while systemic trabecular bone loss distal to the affected joints was compared by micro-CT. Ablation of DR3 protected DBA/1 mice against the development and progression of CIA. In DR3ko, joints of the ankle and mid-foot were almost free of bone erosions and long bones of mice with CIA were protected against systemic trabecular bone loss. In vitro, expression of DR3 was confirmed on primary human CD14+ osteoclast precursors by flow cytometry. These cells were treated with TL1A in osteoclast differentiation medium and TRAP+ osteoclasts, bone resorption, levels of osteoclast-associated chemokines (CCL3, CCL2 and CXCL8) and MMP-9 measured. TL1A intensified human osteoclast differentiation and bone resorption and increased osteoclast-associated production of CCL3 and MMP-9. Our data reveals the DR3 pathway as an attractive therapeutic target to combat adverse bone pathology associated with inflammatory arthritis. We demonstrate that DR3 is critical in the pathogenesis of murine CIA and associated secondary osteoporosis. Furthermore, we identify a novel mechanism by which the DR3/TL1A pathway directly enhances human OC formation and resorptive activity, controlling expression and activation of CCL3 and MMP-9.


Assuntos
Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Quimiocina CCL3/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Osteoclastos/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Reabsorção Óssea/diagnóstico por imagem , Osso Esponjoso/patologia , Células Cultivadas , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos Knockout , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
Pharmacol Res Perspect ; 4(4): e00240, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27347421

RESUMO

Murine collagen-induced arthritis (mCIA) is characterized by decreased vascular constriction responses and increased MMP-9. Here, we describe additional histological alterations within the aorta and surrounding perivascular adipose tissue (PVAT), study the role of PVAT in constriction response, and investigate the potential involvement of death receptor 3 (DR3). mCIA was induced in wild-type (WT) and DR3-/- mice with nonimmunized, age-matched controls. Vascular function was determined in isolated aortic rings ±PVAT, using isometric tension myography, in response to cumulative serotonin concentrations. Cellular expression of F4/80 (macrophages), Ly6G (neutrophils), DR3, and MMP-9 was determined using immunohistochemistry. In WTs, arthritis-induced vascular dysfunction was associated with increased F4/80+ macrophages and increased DR3 expression in the aorta and PVAT. MMP-9 was also up-regulated in PVAT, but did not correlate with alterations of PVAT intact constriction. DR3-/- mice inherently showed increased leukocyte numbers and MMP-9 expression in the PVAT, but retained the same nonarthritic constriction response as DR3WT mice ±PVAT. Arthritic DR3-/- mice had a worsened constriction response than DR3WT and showed an influx of neutrophils to the aorta and PVAT. Macrophage numbers were also up-regulated in DR3-/- PVAT. Despite this influx, PVAT intact DR3-/- constriction responses were restored to the same level as DR3WT. Impaired vascular constriction in inflammatory arthritis occurs independently of total MMP-9 levels, but correlates with macrophage and neutrophil ingress. Ablating DR3 worsens the associated vasculature dysfunction, however, DR3-/- PVAT is able to protect the aorta against aberrant vasoconstriction caused in this model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA