Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37283267

RESUMO

It has been well-established that the topography around conical intersections between excited electronic states is incorrectly described by coupled cluster and many other single reference theories (the intersections are "defective"). Despite this, we show both analytically and numerically that the geometric phase effect (GPE) is correctly reproduced upon traversing a path around a defective excited-state conical intersection (CI) in coupled cluster theory. The theoretical analysis is carried out by using a non-Hermitian generalization of the linear vibronic coupling approach. Interestingly, the approach qualitatively explains the characteristic (incorrect) shape of the defective CIs and CI seams. Moreover, the validity of the approach and the presence of the GPE indicate that defective CIs are local (and not global) artifacts. This implies that a sufficiently accurate coupled cluster method could predict nuclear dynamics, including geometric phase effects, as long as the nuclear wavepacket never gets too close to the conical intersections.

2.
Phys Chem Chem Phys ; 24(40): 24706-24713, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35920683

RESUMO

The photodetachment spectrum of the nitrate anion (NO3-) in the energy range of the NO3 second excited state is simulated from first principles using quantum wave packet dynamics. The prediction at 10 K and 435 K relies on the use of an accurate full-dimensional fully coupled five state diabatic potential model utilizing an artificial neural network. The ability of this model to reproduce experimental spectra was demonstrated recently for the lower energy range [A. Viel, D. M. G. Williams and W. Eisfeld, J. Chem. Phys. 2021, 154, 084302]. Analysis of the spectra indicates a weaker Jahn-Teller coupling compared to the first excited state. The detailed non-adiabatic dynamics is studied by computing the population dynamics. An ultra-fast non-statistical radiationless decay is found only among the Jahn-Teller components, which is followed by a slow statistical non-radiative decay among the different state manifolds. The latter is reproduced perfectly by a simple first order kinetics model. The dynamics in the second excited state is not affected by the presence of a conical intersection with the first excited state manifold.

3.
J Chem Phys ; 154(8): 084302, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639724

RESUMO

The photodetachment spectrum of the nitrate anion (NO3 -) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X̃ 2A2 ' ground state and the B̃ 2E' excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the ν3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.

4.
J Phys Chem A ; 124(37): 7608-7621, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32786968

RESUMO

A recently developed scheme to produce accurate high-dimensional coupled diabatic potential energy surfaces (PESs) based on artificial neural networks (ANNs) [ J. Chem. Phys. 2018, 149, 204106 and J. Chem. Phys. 2019, 151, 164118] is modified to account for the proper complete nuclear permutation inversion (CNPI) invariance. This new approach cures the problem intrinsic to the highly flexible ANN representation of diabatic PESs to account for the proper molecular symmetry accurately. It turns out that the use of CNPI invariants as coordinates for the input layer of the ANN leads to a much more compact and thus more efficient representation of the diabatic PES model without any loss of accuracy. In connection with a properly symmetrized vibronic coupling reference model, which is modified by the output neurons of the CNPI-ANN, the resulting adiabatic PESs show perfect symmetry and high accuracy. In the present paper, the new approach will be described and thoroughly tested. The test case is the representation and corresponding vibrational/vibronic nuclear dynamics of the low-lying electronic states of planar NO3 for which a large number of ab initio data is available. Thus, the present results can be compared directly with the previous studies.

5.
J Chem Phys ; 151(7): 074302, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438692

RESUMO

E ⊗ e Jahn-Teller (JT) systems are considered the prototype of symmetry-induced conical intersections and of the corresponding geometric phase effect (GPE). For decades, this has been analyzed for the most common case originating from C3v symmetry and these results usually were generalized. In the present work, a thorough analysis of the JT effect, vibronic coupling Hamiltonians, GPE, and the effect on spectroscopic properties is carried out for general Cnv symmetric systems (and explicitly for n = 3-8). It turns out that the C3v case is much less general than often assumed. The GPE due to the vibronic Hamiltonian depends on the leading coupling term of a diabatic representation of the problem, which is a result of the explicit n, α, and ß values of a CnvEα ⊗ eß system. Furthermore, the general existence of n/m (m∈N depending on n, α, and ß) equivalent minima on the lower adiabatic sheet of the potential energy surface (PES) leads to tunneling multiplets of n/m states (state components). These sets can be understood as local vibrations of the atoms around their equilibrium positions within each of the local PES wells symmetrized over all equivalent wells. The local vibrations can be classified as tangential or radial vibrations, and the quanta in the tangential mode together with the GPE determine the level ordering within each of the vibronic multiplets. Our theoretical predictions derived analytically are tested and supported by numerical model simulations for all possible Eα ⊗ eß cases for Cnv symmetric systems with n = 3-8. The present interpretation allows for a full understanding of the complex JT spectra of real systems, at least for low excitation energies. This also opens a spectroscopic way to show the existence or absence of GPEs.

6.
J Chem Phys ; 151(16): 164118, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31675871

RESUMO

A recently developed scheme to produce high-dimensional coupled diabatic potential energy surfaces (PESs) based on artificial neural networks (ANNs) [D. M. G. Williams and W. Eisfeld, J. Chem. Phys. 149, 204106 (2019)] is tested for its viability for quantum dynamics applications. The method, capable of reproducing high-quality ab initio data with excellent accuracy, utilizes simple coupling matrices to produce a basic low-order diabatic potential matrix as an underlying backbone for the model. This crude model is then refined by making its expansion coefficients geometry-dependent by the output neurons of the ANN. This structure, strongly guided by a straightforward physical picture behind nonadiabatic coupling, combines structural simplicity with high accuracy, reproducing ab initio data without introducing unphysical artifacts to the surface, even for systems with complicated electronic structure. The properties of diabatic potentials obtained by this method are tested thoroughly in the present study. Vibrational/vibronic eigenstates are computed on the X̃ and à states of NO3, a notoriously difficult Jahn-Teller system featuring strong nonadiabatic couplings and complex spectra. The method is investigated in terms of how consistently it produces dynamics results for PESs of similar (fitting) quality and how the results depend on the ANN size and ANN topography. A central aspect of this work is to understand the convergence properties of the new method in order to evaluate its predictive power. A previously developed, high-quality model utilizing a purely (high-order) polynomial ansatz is used as a reference to showcase improvements of the overall quality which can be obtained by the new method.

7.
J Chem Phys ; 149(20): 204106, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501255

RESUMO

A new diabatization method based on artificial neural networks (ANNs) is presented, which is capable of reproducing high-quality ab initio data with excellent accuracy for use in quantum dynamics studies. The diabatic potential matrix is expanded in terms of a set of basic coupling matrices and the expansion coefficients are made geometry-dependent by the output neurons of the ANN. The ANN is trained with respect to ab initio data using a modified Marquardt-Levenberg back-propagation algorithm. Due to its setup, this approach combines the stability and straightforwardness of a standard low-order vibronic coupling model with the accuracy by the ANN, making it particularly advantageous for problems with a complicated electronic structure. This approach combines the stability and straightforwardness of a standard low-order vibronic coupling model with the accuracy by the ANN, making it particularly advantageous for problems with a complicated electronic structure. This novel ANN diabatization approach has been applied to the low-lying electronic states of NO3 as a prototypical and notoriously difficult Jahn-Teller system in which the accurate description of the very strong non-adiabatic coupling is of paramount importance. Thorough tests show that an ANN with a single hidden layer is sufficient to achieve excellent results and the use of a "deeper" layering shows no clear benefit. The newly developed diabatic ANN potential energy surface (PES) model accurately reproduces a set of more than 90 000 Multi-configuration Reference Singles and Doubles Configuration Interaction (MR-SDCI) energies for the five lowest PES sheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA