Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Chem ; 94(39): 13566-13574, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36129783

RESUMO

Mass spectrometry (MS) is the primary analytical tool used to characterize proteins within the biopharmaceutical industry. Electrospray ionization (ESI) coupled to liquid chromatography (LC) is the current gold standard for intact protein analysis. However, inherent speed limitations of LC/MS prevent analysis of large sample numbers (>1000) in a day. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI-MS), an ambient ionization MS technology, has recently been established as a platform for high-throughput small molecule analysis. Here, we report the applications of such a system for the analysis of intact proteins commonly performed within the drug discovery process. A wide molecular weight range of proteins 10-150 kDa was detected on the system with improved tolerance to salts and buffers compared to ESI. With high concentrations and model proteins, a sample rate of up to 22 Hz was obtained. For proteins at low concentrations and in buffers used in commonly employed assays, robust data at a sample rate of 1.5 Hz were achieved, which is ∼22× faster than current technologies used for high-throughput ESI-MS-based protein assays. In addition, two multiplexed plate-based high-throughput sample cleanup methods were coupled to IR-MALDESI-MS to enable analysis of samples containing excessive amounts of salts and buffers without fully compromising productivity. Example experiments, which leverage the speed of the IR-MALDESI-MS system to monitor NISTmAb reduction, protein autophosphorylation, and compound binding kinetics in near real time, are demonstrated.


Assuntos
Produtos Biológicos , Espectrometria de Massas por Ionização por Electrospray , Descoberta de Drogas , Lasers , Proteínas/química , Sais , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Anal Chem ; 94(12): 4913-4918, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35290016

RESUMO

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry is an ambient-direct sampling method that is being developed for high-throughput, label-free, biochemical screening of large-scale compound libraries. Here, we report the development of an ultra-high-throughput continuous motion IR-MALDESI sampling approach capable of acquiring data at rates up to 22.7 samples per second in a 384-well microtiter plate. At top speed, less than 1% analyte carryover is observed from well-to-well, and signal intensity relative standard deviations (RSD) of 11.5% and 20.9% for 3 µM 1-hydroxymidazolam and 12 µM dextrorphan, respectively, are achieved. The ability to perform parallel kinetics studies on 384 samples with a ∼30 s time resolution using an isocitrate dehydrogenase 1 (IDH1) enzyme assay is shown. Finally, we demonstrate the repeatability and throughput of our approach by measuring 115200 samples from 300 microtiter plate reads consecutively over 5.54 h with RSDs under 8.14% for each freshly introduced plate. Taken together, these results demonstrate the use of IR-MALDESI at sample acquisition rates that surpass other currently reported direct sampling mass spectrometry approaches used for high-throughput compound screening.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas por Ionização por Electrospray , Ensaios Enzimáticos , Lasers , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Anal Chem ; 93(17): 6792-6800, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33885291

RESUMO

Mass spectrometry (MS) can provide high sensitivity and specificity for biochemical assays without the requirement of labels, eliminating the risk of assay interference. However, its use had been limited to lower-throughput assays due to the need for chromatography to overcome ion suppression from the sample matrix. Direct analysis without chromatography has the potential for high throughput if sensitivity is sufficient despite the presence of a matrix. Here, we report and demonstrate a novel direct analysis high-throughput MS system based on infrared matrix-assisted desorption electrospray ionization (IR-MALDESI) that has a potential acquisition rate of 33 spectra/s. We show the development of biochemical assays in standard buffers for wild-type isocitrate dehydrogenase 1 (IDH1), diacylglycerol kinase zeta (DGKζ), and p300 histone acetyltransferase (P300) to demonstrate the suitability of this system for a broad range of high-throughput lead discovery assays. A proof-of-concept pilot screen of ∼3k compounds is also shown for IDH1 and compared to a previously reported fluorescence-based assay. We were able to obtain reliable data at a speed amenable for high-throughput screening of large-scale compound libraries.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas por Ionização por Electrospray , Bioensaio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Anal Chem ; 92(14): 9790-9798, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32567851

RESUMO

Antibody-drug conjugates (ADCs) are an increasingly prevalent drug class utilized as chemotherapeutic agents. The complexity of ADCs, including their large size, array of drug conjugation sites, and heterogeneous compositions containing from zero to several payloads, demands the use of advanced analytical characterization methods. Tandem mass spectrometry (MS/MS) strategies, including a variety of bottom-up, middle-down, and even top-down approaches, frequently applied for the analysis of antibodies are increasingly being adapted for antibody-drug conjugates. Middle-down tandem mass spectrometry, often focusing on the analysis of ∼25 kDa protein subunits, offers the potential for complete sequence confirmation as well as the identification of multiple conjugation states. While middle-down studies have been extensively developed for monoclonal antibodies, middle-down characterization of ADCs has been limited by the high complexity of the drug molecules. This study seeks to bridge the gap by utilizing a combination of 193 nm ultraviolet photodissociation (UVPD), electron-transfer dissociation (ETD), and electron-transfer/higher-energy collision dissociation (EThcD). The compilation of these MS/MS methods leads to high sequence coverages of 60-80% for each subunit of the ADC. Moreover, the combined fragmentation patterns provide sufficient information to allow confirmation of both the sequence of the complementarity-determining regions and the payload conjugation sites.


Assuntos
Imunoconjugados/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Fracionamento Químico , Subunidades Proteicas
5.
Proteomics ; 19(11): e1800433, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30784174

RESUMO

Chemical proteomics enables comprehensive profiling of small molecules in complex proteomes. A critical component to understand the interactome of a small molecule is the precise location on a protein where the interaction takes place. Several approaches have been developed that take advantage of bio-orthogonal chemistry and subsequent enrichment steps to isolate peptides modified by small molecules. These methods rely on target identification at the level of mass spectrometry making it difficult to interpret an experiment when modified peptides are not identified. Herein, an approach in which fluorescence-triggered two-dimensional chromatography enables the isolation of small molecule-conjugated peptides prior to mass spectrometry analysis is described. In this study, a bromocoumarin moiety has been utilized that fluoresces and generates a distinct isotopic signature to locate and identify modified peptides. Profiling of a cellular cysteinome with the use of a bromocoumarin tag demonstrates that two-dimensional fluorescence-based chromatography separation can enable the identification of proteins containing reactive cysteine residues. Moreover, the method facilitates the interrogation of low abundance proteins with greater depth and sensitivity than a previously reported isotope-targeted approach. Lastly, this workflow enables the identification of small-molecule modified peptides from a protein-of-interest.


Assuntos
Cumarínicos/química , Cisteína/análise , Corantes Fluorescentes/química , Peptídeos/química , Fluorescência , Halogenação , Humanos , Células K562 , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
6.
Anal Chem ; 91(4): 2805-2812, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30661356

RESUMO

The synthesis of antibody-drug conjugates (ADCs) using the interchain cysteines of the antibody inherently gives a mixture of proteins with varying drug-to-antibody ratio. The drug distribution profiles of ADCs are routinely characterized by hydrophobic interaction chromatography (HIC). Because HIC is not in-line compatible with mass spectrometry (MS) due to the high salt levels, it is laborious to identify the constituents of HIC peaks. An MS-compatible alternative to HIC is reported here: native reversed phase liquid chromatography (nRPLC). This novel technique employs a mobile phase 50 mM ammonium acetate for high sensitivity in MS and elution with a gradient of water/isopropanol. The key to the enhancement is a bonded phase giving weaker drug-surface interactions compared to the noncovalent interactions holding the antibody-drug conjugates together. The hydrophobicity of the bonded phase is varied, and the least hydrophobic bonded phase in the series, poly(methyl methacrylate), is found to resolve the intact constituents of a model ADC (Ab095-PZ) and a commercial ADC (brentuximab vedotin) under the MS-compatible conditions. The nRPLC-MS data show that all species, ranging from drug-to-antibody ratios of 1 to 8, remained intact in the column. Another desired advantage of the nRPLC is the ability of resolving multiple positional isomers of ADC that are not well-resolved in other chromatographic modes. This supports the premise that lower hydrophobicity of the bonded phase is the key to enabling online nRPLC-MS analysis of antibody-drug conjugates.


Assuntos
Antineoplásicos Imunológicos/análise , Brentuximab Vedotin/análise , Cromatografia de Fase Reversa/métodos , Imunoconjugados/análise , Acetatos/química , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas
7.
Rapid Commun Mass Spectrom ; 31(22): 1868-1874, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28841760

RESUMO

RATIONALE: High-throughput screening (HTS) is a critical step in the drug discovery process. However, most mass spectrometry (MS)-based HTS methods require sample cleanup steps prior to analysis. In this work we present the utility of infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) for monitoring an enzymatic reaction directly from a biological buffer system with no sample cleanup and at high throughput. METHODS: IR-MALDESI was used to directly analyze reaction mixtures from a well plate at different time points after reaction initiation. The percent conversion of precursors to products was used to screen the enzyme activity. The reaction was performed with two different concentrations of precursors and enzyme in order to assess the dynamic range of the assay. Eventually, a pseudo-HTS study was designed to investigate the utility of IR-MALDESI screening enzyme activity in a high-throughput manner. RESULTS: IR-MALDESI was able to readily monitor the activity of IDH1 over time at two different concentrations of precursors and enzyme. The calculated Z-factors of 0.65 and 0.41 confirmed the suitability of the developed method for screening enzyme activity in HTS manner. Finally, in a single-blind pseudo-HTS analysis IR-MALDESI was able to correctly predict the identity of all samples, where 8/10 samples were identified with high confidence and the other two samples with lower confidence. CONCLUSIONS: The enzymatic activity of IDH1 was screened by directly analyzing the reaction content from the buffer in well plates with no sample cleanup steps. This proof-of-concept study demonstrates the robustness of IR-MALDESI for direct analysis of enzymatic reactions from biological buffers with no sample cleanup and its immense potential for HTS applications.


Assuntos
Descoberta de Drogas/métodos , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Modelos Químicos , NADP/metabolismo
9.
Nat Chem Biol ; 9(5): 319-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524983

RESUMO

In contrast to studies on class I histone deacetylase (HDAC) inhibitors, the elucidation of the molecular mechanisms and therapeutic potential of class IIa HDACs (HDAC4, HDAC5, HDAC7 and HDAC9) is impaired by the lack of potent and selective chemical probes. Here we report the discovery of inhibitors that fill this void with an unprecedented metal-binding group, trifluoromethyloxadiazole (TFMO), which circumvents the selectivity and pharmacologic liabilities of hydroxamates. We confirm direct metal binding of the TFMO through crystallographic approaches and use chemoproteomics to demonstrate the superior selectivity of the TFMO series relative to a hydroxamate-substituted analog. We further apply these tool compounds to reveal gene regulation dependent on the catalytic active site of class IIa HDACs. The discovery of these inhibitors challenges the design process for targeting metalloenzymes through a chelating metal-binding group and suggests therapeutic potential for class IIa HDAC enzyme blockers distinct in mechanism and application compared to current HDAC inhibitors.


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Zinco/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/genética , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Oxidiazóis/química , Relação Estrutura-Atividade , Zinco/metabolismo
10.
Expert Opin Drug Discov ; 19(3): 291-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111363

RESUMO

INTRODUCTION: Ultra-high-throughput mass spectrometry, uHT-MS, is a technology that utilizes ionization and sample delivery technologies optimized to enable sampling from well plates at > 1 sample per second. These technologies do not need a chromatographic separation step and can be utilized in a wide variety of assays to detect a broad range of analytes including small molecules, lipids, and proteins. AREAS COVERED: This manuscript provides a brief historical review of high-throughput mass spectrometry and the recently developed technologies that have enabled uHT-MS. The report also provides examples and references on how uHT-MS has been used in biochemical and chemical assays, nuisance compound profiling, protein analysis and high throughput experimentation for chemical synthesis. EXPERT OPINION: The fast analysis time provided by uHT-MS is transforming how biochemical and chemical assays are performed in drug discovery. The potential to associate phenotypic responses produced by 1000's of compound treatments with changes in endogenous metabolite and lipid signals is becoming feasible. With the augmentation of simple, fast, high-throughput sample preparation, the scope of uHT-MS usage will increase. However, it likely will not supplant LC-MS for analyses that require low detection limits from complex matrices or characterization of complex biotherapeutics such as antibody-drug conjugates.


Assuntos
Descoberta de Drogas , Espectrometria de Massa com Cromatografia Líquida , Humanos , Espectrometria de Massas/métodos , Descoberta de Drogas/métodos
11.
SLAS Technol ; 29(4): 100163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39047813

RESUMO

Over the last 5 years, IR-MALDESI-MS (Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry) has been demonstrated for use in a range of high-throughput biochemical and cellular assays with remarkable sample acquisition rates up to 22 Hz for a single 384-well assay plate. With such high single plate acquisition rates, the rate limiting step becomes how fast subsequent plates can be presented to the MS for analysis. To make this transfer as fast as possible while maintaining safe operation in a laboratory environment, we developed a collaborative robotic plate transfer system (CRPTS) that combines a 6-axis robot with dual plate grippers, a 7th axis conveyor stage, and a 420-plate capacity sample loading window. As a demonstration of the throughput and flexibility of CRPTS, we performed a biochemical assay that monitored the oxidation of tris(2-carboxyethyl)phosphine (TCEP) to screen for nuisance compounds. Using continuous and step motion scan profiles, we analyzed 158,799 compounds contained in 448 assay plates over the course of 12.5 h (Z-Factor=0.87) and 17.5 h (Z-factor=0.99), respectively. Extrapolating these results enables the screening of a million compounds within 6-7 working days.


Assuntos
Ensaios de Triagem em Larga Escala , Robótica , Robótica/instrumentação , Robótica/métodos , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
J Am Soc Mass Spectrom ; 35(8): 1913-1920, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38991134

RESUMO

Native mass spectrometry (MS) is a powerful analytical technique to directly probe noncovalent protein-protein and protein-ligand interactions. However, not every MS platform can preserve proteins in their native conformation due to high energy deposition from the utilized ionization source. Most small molecules approved as drugs and in development interact with their targets through noncovalent interactions. Therefore, rapid methods to analyze noncovalent protein-ligand interactions are necessary for the early stages of the drug discovery pipeline. Herein, we describe a method for analyzing noncovalent protein-ligand complexes by IR-MALDESI-MS with analysis times of ∼13 s per sample. Carbonic anhydrase and the kinase domain of Bruton's tyrosine kinase are paired with known noncovalent binders to evaluate the effectiveness of native MS by IR-MALDESI.


Assuntos
Espectrometria de Massas , Ligantes , Espectrometria de Massas/métodos , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/análise , Ligação Proteica , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Humanos , Proteínas/química , Proteínas/metabolismo , Proteínas/análise
13.
Mol Brain ; 17(1): 26, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778381

RESUMO

Aggregation of misfolded α-synuclein (α-syn) is a key characteristic feature of Parkinson's disease (PD) and related synucleinopathies. The nature of these aggregates and their contribution to cellular dysfunction is still not clearly elucidated. We employed mass spectrometry-based total and phospho-proteomics to characterize the underlying molecular and biological changes due to α-syn aggregation using the M83 mouse primary neuronal model of PD. We identified gross changes in the proteome that coincided with the formation of large Lewy body-like α-syn aggregates in these neurons. We used protein-protein interaction (PPI)-based network analysis to identify key protein clusters modulating specific biological pathways that may be dysregulated and identified several mechanisms that regulate protein homeostasis (proteostasis). The observed changes in the proteome may include both homeostatic compensation and dysregulation due to α-syn aggregation and a greater understanding of both processes and their role in α-syn-related proteostasis may lead to improved therapeutic options for patients with PD and related disorders.


Assuntos
Neurônios , Doença de Parkinson , Agregados Proteicos , Proteômica , Proteostase , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Mapas de Interação de Proteínas , Proteoma/metabolismo
14.
ACS Chem Biol ; 18(4): 942-948, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37043689

RESUMO

Cellular pharmacodynamic assays are crucial aspects of lead optimization programs in drug discovery. These assays are sometimes difficult to develop, oftentimes distal from the target and frequently low throughput, which necessitates their incorporation in the drug discovery funnel later than desired. The earlier direct pharmacodynamic modulation of a target can be established, the fewer resources are wasted on compounds that are acting via an off-target mechanism. Mass spectrometry is a versatile tool that is often used for direct, proximal cellular pharmacodynamic assay analysis, but liquid chromatography-mass spectrometry methods are low throughput and are unable to fully support structure-activity relationship efforts in early medicinal chemistry programs. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is an ambient ionization method amenable to high-throughput cellular assays, capable of diverse analyte detection, ambient and rapid laser sampling processes, and low cross-contamination. Here, we demonstrate the capability of IR-MALDESI for the detection of diverse analytes directly from cells and report the development of a high-throughput, label-free, proximal cellular pharmacodynamic assay using IR-MALDESI for the discovery of glutaminase inhibitors and a biochemical assay for hit confirmation. We demonstrate the throughput with a ∼100,000-compound cellular screen. Hits from the screening were confirmed by retesting in dose-response with mass spectrometry-based cellular and biochemical assays. A similar workflow can be applied to other targets with minimal modifications, which will speed up the discovery of cell active lead series and minimize wasted chemistry resources on off-target mechanisms.


Assuntos
Glutaminase , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glutaminase/antagonistas & inibidores , Lasers , Proteínas , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
15.
J Biol Chem ; 286(14): 12407-16, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21266572

RESUMO

Phospholipase C (PLC) enzymes are an important family of regulatory proteins involved in numerous cellular functions, primarily through hydrolysis of the polar head group from inositol-containing membrane phospholipids. U73122 (1-(6-((17ß-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione), one of only a few small molecules reported to inhibit the activity of these enzymes, has been broadly applied as a pharmacological tool to implicate PLCs in diverse experimental phenotypes. The purpose of this study was to develop a better understanding of molecular interactions between U73122 and PLCs. Hence, the effects of U73122 on human PLCß3 (hPLCß3) were evaluated in a cell-free micellar system. Surprisingly, U73122 increased the activity of hPLCß3 in a concentration- and time-dependent manner; up to an 8-fold increase in enzyme activity was observed with an EC50=13.6±5 µm. Activation of hPLCß3 by U73122 required covalent modification of cysteines as evidenced by the observation that enzyme activation was attenuated by thiol-containing nucleophiles, l-cysteine and glutathione. Mass spectrometric analysis confirmed covalent reaction with U73122 at eight cysteines, although maximum activation was achieved without complete alkylation; the modified residues were identified by LC/MS/MS peptide sequencing. Interestingly, U73122 (10 µm) also activated hPLCγ1 (>10-fold) and hPLCß2 (∼2-fold); PLCδ1 was neither activated nor inhibited. Therefore, in contrast to its reported inhibitory potential, U73122 failed to inhibit several purified PLCs. Most of these PLCs were directly activated by U73122, and a simple mechanism for the activation is proposed. These results strongly suggest a need to re-evaluate the use of U73122 as a general inhibitor of PLC isozymes.


Assuntos
Estrenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Fosfolipases Tipo C/metabolismo , Sequência de Aminoácidos , Ativação Enzimática/efeitos dos fármacos , Estrenos/química , Humanos , Dados de Sequência Molecular , Inibidores de Fosfodiesterase/química , Pirrolidinonas/química , Fosfolipases Tipo C/química
16.
J Am Soc Mass Spectrom ; 33(2): 328-334, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073091

RESUMO

Infrared matrix-assisted laser desorption ionization (IR-MALDESI) is a hybrid mass spectrometry ionization source that combines the benefits of electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) making it a great analytical tool for high-throughput screening (HTS) analyses. IR-MALDESI is coupled to an Orbitrap Exploris 240 mass spectrometer that utilizes a bent quadrupole (C-trap) to inject accumulated ions into the high-field Orbitrap mass analyzer. Here, we present a study on the optimized C-trap timing for HTS analyses by IR-MALDESI mass spectrometry. The timing between initial ion generation and the C-trap opening time was optimized to reduce unnecessary ambient ion accumulation in the mass spectrometer. The time in which the C-trap was held open, the ion accumulation time, was further optimized to maximize the accumulation of analyte ions generated using IR-MALDESI. The resulting C-trap opening scheme benefits small-molecule HTS analyses by IR-MALDESI by maximizing target ion abundances, minimizing ambient ion abundances, and minimizing the total analysis time per sample. The proposed C-trap timing scheme for HTS does not translate to large molecules; a NIST monoclonal antibody standard reference material was analyzed to demonstrate that larger analytes require longer ion accumulation times and that IR-MALDESI can measure intact antibodies in their native state.

17.
J Am Soc Mass Spectrom ; 33(12): 2338-2341, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36378849

RESUMO

Deconvolution from intact protein mass-to-charge spectra to mass spectra is essential to generate interpretable data for mass spectrometry (MS) platforms coupled to ionization sources that produce multiply charged species. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) can be used to analyze intact proteins in multiwell microtiter plates with speed matching small molecule analyses (at least 1 Hz). However, the lack of compatible deconvolution software has limited its use in high-throughput screening applications. Most existing automated deconvolution software packages work best for data generated from LC-MS, and to the best of our knowledge, there is no software capable of performing fast plate-based mass spectral deconvolution. Herein we present the use of a new workflow in ProSight Native for the deconvolution of protein spectra from entire well plates that can be completed within 3 s. First, we successfully demonstrated the potential increased throughput benefits produced by the combined IR-MALDESI-MS - ProSight Native platform using protein standards. We then conducted a screen for Bruton's tyrosine kinase (BTK) covalent binders against a well-annotated compound collection consisting of 2232 compounds and applied ProSight Native to deconvolute the protein spectra. Seventeen hits including five known BTK covalent inhibitors in the compound set were identified. By alleviating the data processing bottleneck using ProSight Native, it may be feasible to analyze and report covalent screening results for >200,000 samples in a single day.


Assuntos
Espectrometria de Massas , Proteínas , Proteínas/química , Software
18.
J Mass Spectrom ; 57(6): e4869, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35678360

RESUMO

Mass spectrometry (MS) is an effective analytical tool for high-throughput screening (HTS) in the drug discovery field. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MS is a high-throughput platform that has achieved analysis times of sub-seconds-per-sample. Due to the high-throughput analysis speed, methods are needed to increase the analyte signal while decreasing the variability in IR-MALDESI-MS analyses to improve data quality and reduce false-positive hits. The Z-factor is used as a statistic of assay quality that can be improved by reducing the variation of target ion abundances or increasing signal. Herein we report optimal solvent compositions for increasing measured analyte abundances with direct analysis by IR-MALDESI-MS. We also evaluate normalization strategies, such as adding a normalization standard that is similar or dissimilar in structure to the model target drug, to reduce the variability of measured analyte abundances with direct analyses by IR-MALDESI-MS in both positive and negative ionization modes.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas por Ionização por Electrospray , Descoberta de Drogas , Lasers , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
19.
J Am Soc Mass Spectrom ; 33(11): 2070-2077, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36173393

RESUMO

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a hybrid, ambient ionization source that combines the advantages of electrospray ionization and matrix-assisted laser desorption/ionization, making it a versatile tool for both high-throughput screening (HTS) and mass spectrometry imaging (MSI) studies. To expand the capabilities of the IR-MALDESI source, an entirely new architecture was designed to overcome the key limitations of the previous source. This next-generation (NextGen) IR-MALDESI source features a vertically mounted IR-laser, a planar translation stage with computerized sample height control, an aluminum enclosure, and a novel mass spectrometer interface plate. The NextGen IR-MALDESI source has improved user-friendliness, improved overall versatility, and can be coupled to numerous Orbitrap mass spectrometers to accommodate more research laboratories. In this work, we highlight the benefits of the NextGen IR-MALDESI source as an improved platform for MSI and direct analysis. We also optimize the NextGen MALDESI source component geometries to increase target ion abundances over a wide m/z range. Finally, documentation is provided for each NextGen IR-MALDESI part so that it can be replicated and incorporated into any lab space.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lasers
20.
Proc Natl Acad Sci U S A ; 105(8): 2773-8, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287036

RESUMO

Analysis of the x-ray crystal structure of mono-substituted acetylenic thienopyrimidine 6 complexed with the ErbB family enzyme ErbB-4 revealed a covalent bond between the terminal carbon of the acetylene moiety and the sulfhydryl group of Cys-803 at the solvent interface. The identification of this covalent adduct suggested that acetylenic thienopyrimidine 6 and related analogs might also be capable of forming an analogous covalent adduct with EGFR, which has a conserved cysteine (797) near the ATP binding pocket. To test this hypothesis, we treated a truncated, catalytically competent form of EGFR (678-1020) with a structurally related propargylic amine (8). An investigation of the resulting complex by mass spectrometry revealed the formation of a covalent complex of thienopyrimidine 8 with Cys-797 of EGFR. This finding enabled us to readily assess the irreversibility of various inhibitors and also facilitated a structure-activity relationship understanding of the covalent modifying potential and biological activity of a series of acetylenic thienopyrimidine compounds with potent antitumor activity. Several ErbB family enzyme and cell potent 6-ethynyl thienopyrimidine kinase inhibitors were found to form covalent adducts with EGFR.


Assuntos
Alcinos/metabolismo , Compostos de Anilina/metabolismo , Receptores ErbB/metabolismo , Modelos Moleculares , Pirimidinas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Feminino , Isatina/análogos & derivados , Isatina/metabolismo , Espectrometria de Massas , Camundongos , Camundongos SCID , Estrutura Molecular , Pirimidinas/toxicidade , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA