Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149403

RESUMO

Neurophysiological brain activity comprises rhythmic (periodic) and arrhythmic (aperiodic) signal elements, which are increasingly studied in relation to behavioral traits and clinical symptoms. Current methods for spectral parameterization of neural recordings rely on user-dependent parameter selection, which challenges the replicability and robustness of findings. Here, we introduce a principled approach to model selection, relying on Bayesian information criterion, for static and time-resolved spectral parameterization of neurophysiological data. We present extensive tests of the approach with ground-truth and empirical magnetoencephalography recordings. Data-driven model selection enhances both the specificity and sensitivity of spectral and spectrogram decompositions, even in non-stationary contexts. Overall, the proposed spectral decomposition with data-driven model selection minimizes the reliance on user expertise and subjective choices, enabling more robust, reproducible, and interpretable research findings.

2.
Brain Commun ; 6(4): fcae231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39056027

RESUMO

Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.

3.
Elife ; 112022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094163

RESUMO

Macroscopic neural dynamics comprise both aperiodic and periodic signal components. Recent advances in parameterizing neural power spectra offer practical tools for evaluating these features separately. Although neural signals vary dynamically and express non-stationarity in relation to ongoing behaviour and perception, current methods yield static spectral decompositions. Here, we introduce Spectral Parameterization Resolved in Time (SPRiNT) as a novel method for decomposing complex neural dynamics into periodic and aperiodic spectral elements in a time-resolved manner. First, we demonstrate, with naturalistic synthetic data, SPRiNT's capacity to reliably recover time-varying spectral features. We emphasize SPRiNT's specific strengths compared to other time-frequency parameterization approaches based on wavelets. Second, we use SPRiNT to illustrate how aperiodic spectral features fluctuate across time in empirical resting-state EEG data (n=178) and relate the observed changes in aperiodic parameters over time to participants' demographics and behaviour. Lastly, we use SPRiNT to demonstrate how aperiodic dynamics relate to movement behaviour in intracranial recordings in rodents. We foresee SPRiNT responding to growing neuroscientific interests in the parameterization of time-varying neural power spectra and advancing the quantitation of complex neural dynamics at the natural time scales of behaviour.


Assuntos
Encéfalo , Humanos , Estudos Longitudinais
4.
IEEE Trans Vis Comput Graph ; 28(12): 4685-4699, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34310307

RESUMO

Exploring large virtual environments, such as cities, is a central task in several domains, such as gaming and urban planning. VR systems can greatly help this task by providing an immersive experience; however, a common issue with viewing and navigating a city in the traditional sense is that users can either obtain a local or a global view, but not both at the same time, requiring them to continuously switch between perspectives, losing context and distracting them from their analysis. In this article, our goal is to allow users to navigate to points of interest without changing perspectives. To accomplish this, we design an intuitive navigation interface that takes advantage of the strong sense of spatial presence provided by VR. We supplement this interface with a perspective that warps the environment, called UrbanRama, based on a cylindrical projection, providing a mix of local and global views. The design of this interface was performed as an iterative process in collaboration with architects and urban planners. We conducted a qualitative and a quantitative pilot user study to evaluate UrbanRama and the results indicate the effectiveness of our system in reducing perspective changes, while ensuring that the warping doesn't affect distance and orientation perception.


Assuntos
Interface Usuário-Computador , Realidade Virtual , Gráficos por Computador , Cidades
5.
IEEE Trans Vis Comput Graph ; 25(3): 1559-1574, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29994514

RESUMO

Large scale shadows from buildings in a city play an important role in determining the environmental quality of public spaces. They can be both beneficial, such as for pedestrians during summer, and detrimental, by impacting vegetation and by blocking direct sunlight. Determining the effects of shadows requires the accumulation of shadows over time across different periods in a year. In this paper, we propose a simple yet efficient class of approach that uses the properties of sun movement to track the changing position of shadows within a fixed time interval. We use this approach to extend two commonly used shadow techniques, shadow maps and ray tracing, and demonstrate the efficiency of our approach. Our technique is used to develop an interactive visual analysis system, Shadow Profiler, targeted at city planners and architects that allows them to test the impact of shadows for different development scenarios. We validate the usefulness of this system through case studies set in Manhattan, a dense borough of New York City.

6.
IEEE Trans Vis Comput Graph ; 23(1): 791-800, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875193

RESUMO

Cities are inherently dynamic. Interesting patterns of behavior typically manifest at several key areas of a city over multiple temporal resolutions. Studying these patterns can greatly help a variety of experts ranging from city planners and architects to human behavioral experts. Recent technological innovations have enabled the collection of enormous amounts of data that can help in these studies. However, techniques using these data sets typically focus on understanding the data in the context of the city, thus failing to capture the dynamic aspects of the city. The goal of this work is to instead understand the city in the context of multiple urban data sets. To do so, we define the concept of an "urban pulse" which captures the spatio-temporal activity in a city across multiple temporal resolutions. The prominent pulses in a city are obtained using the topology of the data sets, and are characterized as a set of beats. The beats are then used to analyze and compare different pulses. We also design a visual exploration framework that allows users to explore the pulses within and across multiple cities under different conditions. Finally, we present three case studies carried out by experts from two different domains that demonstrate the utility of our framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA