Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 7(4): 295-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18297077

RESUMO

Electromagnetic metamaterials are a class of materials that have been artificially structured on a subwavelength scale. They are currently the focus of a great deal of interest because they allow access to previously unrealizable properties such as a negative refractive index. Most metamaterial designs have so far been based on resonant elements, such as split rings, and research has concentrated on microwave frequencies and above. Here, we present the first experimental realization of a non-resonant metamaterial designed to operate at zero frequency. Our samples are based on a recently proposed template for an anisotropic magnetic metamaterial consisting of an array of superconducting plates. Magnetometry experiments show a strong, adjustable diamagnetic response when a field is applied perpendicular to the plates. We have calculated the corresponding effective permeability, which agrees well with theoretical predictions. Applications for this metamaterial may include non-intrusive screening of weak d.c. magnetic fields.

2.
Science ; 291(5505): 849-51, 2001 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-11157159

RESUMO

Magnetic resonance imaging and spectroscopy systems use coils, either singly or as arrays, to intercept radio-frequency (RF) magnetic flux from regions of interest, often deep within the body. Here, we show that a new magnetic material offers novel possibilities for guiding RF flux to the receiver coil, permitting a clear image to be obtained where none might otherwise be detectable. The new material contains microstructure designed according to concepts taken from the field of photonic band gap materials. In the RF range, it has a magnetic permeability that can be produced to specification while exhibiting negligible direct-current magnetism. The latter property is vital to avoid perturbing the static and audio-frequency magnetic fields needed to obtain image and spectral data. The concept offers a new paradigm for the manipulation of RF flux in all nuclear magnetic resonance systems.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Magnetismo , Humanos , Ondas de Rádio , Polegar/anatomia & histologia
3.
J Phys Condens Matter ; 21(29): 292201, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21828524

RESUMO

Chiral Swiss rolls, consisting of a metal/dielectric laminate tape helically wound on an insulating mandrel, have been developed to form the basis of a highly chiral metamaterial. We have fabricated these elements using a custom-built machine, and have characterized them. We find that the permeability, permittivity, and chirality are all resonant in the region of 80 MHz. The chirality is so strong that it can be directly measured by observing the magnetic response to an applied electric field, and is larger than either the permeability or the permittivity. We have estimated the refractive indices from these data, and find both strong circular dichroism and a wide frequency range where the refractive index is negative.

4.
Science ; 292(5514): 60-1, 2001 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-11294217
5.
Science ; 305(5685): 788-92, 2004 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-15297655

RESUMO

Recently, artificially constructed metamaterials have become of considerable interest, because these materials can exhibit electromagnetic characteristics unlike those of any conventional materials. Artificial magnetism and negative refractive index are two specific types of behavior that have been demonstrated over the past few years, illustrating the new physics and new applications possible when we expand our view as to what constitutes a material. In this review, we describe recent advances in metamaterials research and discuss the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA