Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(7): 2247-2263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597885

RESUMO

KEY MESSAGE: This study identified a significant number of QTL that are associated with FHB disease resistance in NMBU spring wheat panel by conducting genome-wide association study. Fusarium head blight (FHB) is a widely known devastating disease of wheat caused by Fusarium graminearum and other Fusarium species. FHB resistance is quantitative, highly complex and divided into several resistance types. Quantitative trait loci (QTL) that are effective against several of the resistance types give valuable contributions to resistance breeding. A spring wheat panel of 300 cultivars and breeding lines of Nordic and exotic origins was tested in artificially inoculated field trials and subjected to visual FHB assessment in the years 2013-2015, 2019 and 2020. Deoxynivalenol (DON) content was measured on harvested grain samples, and anther extrusion (AE) was assessed in separate trials. Principal component analysis based on 35 and 25 K SNP arrays revealed the existence of two subgroups, dividing the panel into European and exotic lines. We employed a genome-wide association study to detect QTL associated with FHB traits and identify marker-trait associations that consistently influenced FHB resistance. A total of thirteen QTL were identified showing consistent effects across FHB resistance traits and environments. Haplotype analysis revealed a highly significant QTL on 7A, Qfhb.nmbu.7A.2, which was further validated on an independent set of breeding lines. Breeder-friendly KASP markers were developed for this QTL that can be used in marker-assisted selection. The lines in the wheat panel harbored from zero to five resistance alleles, and allele stacking showed that resistance can be significantly increased by combining several of these resistance alleles. This information enhances breeders´ possibilities for genomic prediction and to breed cultivars with improved FHB resistance.


Assuntos
Resistência à Doença , Fusarium , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
2.
Theor Appl Genet ; 130(7): 1361-1374, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28365817

RESUMO

KEY MESSAGE: The effect of the SnTox3-Snn3 interaction was documented for the first time under natural infection at the adult plant stage in the field. Co-segregating SNP markers were identified. Parastagonospora nodorum is a necrotrophic pathogen of wheat, causing Septoria nodorum blotch (SNB) affecting both the leaf and glume. P. nodorum is the major leaf blotch pathogen on spring wheat in Norway. Resistance to the disease is quantitative, but several host-specific interactions between necrotrophic effectors (NEs) and host sensitivity (Snn) genes have been identified, playing a major role at the seedling stage. However, the effect of these interactions in the field under natural infection has not been investigated. In the present study, we saturated the genetic map of the recombinant inbred (RI) population SHA3/CBRD × Naxos using the Illumina 90 K SNP chip. The population had previously been evaluated for segregation of SNB susceptibility in field trials. Here, we infiltrated the population with the purified NEs SnToxA, SnTox1 and SnTox3, and mapped the Snn3 locus on 5BS based on sensitivity segregation and SNP marker data. We also conducted inoculation and culture filtrate (CF) infiltration experiments on the population with four selected P. nodorum isolates from Norway and North America. Remapping of quantitative trait loci (QTL) for field resistance showed that the SnTox3-Snn3 interaction could explain 24% of the phenotypic variation in the field, and more than 51% of the variation in seedling inoculations. To our knowledge, this is the first time the effect of this interaction has been documented at the adult plant stage under natural infection in the field.


Assuntos
Ascomicetos/patogenicidade , Genes de Plantas , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Suscetibilidade a Doenças , Ligação Genética , Genótipo , Interações Hospedeiro-Patógeno/genética , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
3.
PLoS One ; 4(11): e7817, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19915673

RESUMO

BACKGROUND: SET-domain proteins are histone lysine (K) methyltransferases (HMTase) implicated in defining transcriptionally permissive or repressive chromatin. The Arabidopsis ASH1 HOMOLOG 2 (ASHH2) protein (also called SDG8, EFS and CCR1) has been suggested to methylate H3K4 and/or H3K36 and is similar to Drosophila ASH1, a positive maintainer of gene expression, and yeast Set2, a H3K36 HMTase. Mutation of the ASHH2 gene has pleiotropic developmental effects. Here we focus on the role of ASHH2 in plant reproduction. METHODOLOGY/PRINCIPAL FINDINGS: A slightly reduced transmission of the ashh2 allele in reciprocal crosses implied involvement in gametogenesis or gamete function. However, the main requirement of ASHH2 is sporophytic. On the female side, close to 80% of mature ovules lack embryo sac. On the male side, anthers frequently develop without pollen sacs or with specific defects in the tapetum layer, resulting in reduction in the number of functional pollen per anther by up to approximately 90%. In consistence with the phenotypic findings, an ASHH2 promoter-reporter gene was expressed at the site of megaspore mother cell formation as well as tapetum layers and pollen. ashh2 mutations also result in homeotic changes in floral organ identity. Transcriptional profiling identified more than 300 up-regulated and 600 down-regulated genes in ashh2 mutant inflorescences, whereof the latter included genes involved in determination of floral organ identity, embryo sac and anther/pollen development. This was confirmed by real-time PCR. In the chromatin of such genes (AP1, AtDMC1 and MYB99) we observed a reduction of H3K36 trimethylation (me3), but not H3K4me3 or H3K36me2. CONCLUSIONS/SIGNIFICANCE: The severe distortion of reproductive organ development in ashh2 mutants, argues that ASHH2 is required for the correct expression of genes essential to reproductive development. The reduction in the ashh2 mutant of H3K36me3 on down-regulated genes relevant to the observed defects, implicates ASHH2 in regulation of gene expression via H3K36 trimethylation in chromatin of Arabidopsis inflorescences.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Proteínas de Plantas/metabolismo , Alelos , Cromatina/química , Cruzamentos Genéticos , Regulação para Baixo , Perfilação da Expressão Gênica , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/fisiologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Óvulo Vegetal/genética , Fenótipo , Pólen , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA