Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005244

RESUMO

This research presents novel ibuprofen derivatives in the form of alkyl ester salts of L-amino acids with potential analgesic, anti-inflammatory, and antipyretic properties for potential use in transdermal therapeutic systems. New derivatives of (RS)-2-[4-(2-methylpropyl)phenyl]propionic acid were synthesized using hydrochlorides of alkyl esters (ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, and pentyl) of L-glutamine. These were further transformed into alkyl esters of L-amino acid ibuprofenates through neutralization and protonation reactions. Characterization involved spectroscopic methods, including nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Various physicochemical properties were investigated, such as UV-Vis spectroscopy, polarimetric analysis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, water solubility, octanol/water partition coefficient, and permeability through pig skin using Franz diffusion cells. The research confirmed the ionic structure of the obtained hydrochlorides of alkyl esters of L-amino acids and ibuprofenates of alkyl esters of L-glutamic acid. It revealed significant correlations between ester chain length and thermal stability, crystallinity, phase transition temperatures, lipophilicity, water solubility, skin permeability, and skin accumulation of these compounds. Compared to the parent ibuprofen, the synthesized derivatives exhibited higher water solubility, lower lipophilicity, and enhanced skin permeability. This study introduces promising ibuprofen derivatives with improved physicochemical properties, highlighting their potential for transdermal therapeutic applications. The findings shed light on the structure-activity relationships of these derivatives, offering insights into their enhanced solubility and skin permeation, which could lead to more effective topical treatments for pain and inflammation.


Assuntos
Ibuprofeno , Sais , Animais , Suínos , Ibuprofeno/química , Sais/farmacologia , Ésteres/química , Administração Cutânea , Pele , Solubilidade , Aminoácidos/farmacologia , Permeabilidade , Água/farmacologia
2.
ChemistryOpen ; 11(4): e202100262, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35373521

RESUMO

A new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7-8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 µmol h-1 during 24 h of radiation.


Assuntos
Dióxido de Carbono , Hidrogênio , Bicarbonatos , Dióxido de Carbono/química , Radical Hidroxila , Hidróxido de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA