Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Cell ; 180(4): 796-812.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059778

RESUMO

Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Imagem Óptica/métodos , Coloração e Rotulagem/métodos , Idoso de 80 Anos ou mais , Animais , Encéfalo/diagnóstico por imagem , Olho/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional/normas , Rim/diagnóstico por imagem , Limite de Detecção , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Óptica/normas , Pâncreas/diagnóstico por imagem , Coloração e Rotulagem/normas , Suínos , Glândula Tireoide/diagnóstico por imagem
2.
Proc Natl Acad Sci U S A ; 120(29): e2301250120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428903

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Suínos , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Proteoma/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Músculo Esquelético/metabolismo , Éxons/genética
4.
PLoS Genet ; 18(5): e1010190, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533204

RESUMO

Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals. We show that loss of MGME1 leads to de novo formation of linear deleted mtDNA fragments that are constantly made and degraded. These findings contradict previous proposal that MGME1 is essential for degradation of linear mtDNA fragments and instead support a model where MGME1 has a critical role in completion of mtDNA replication. We report that Mgme1 knockout mice develop a dramatic phenotype as they age and display progressive weight loss, cataract and retinopathy. Surprisingly, aged animals also develop kidney inflammation, glomerular changes and severe chronic progressive nephropathy, consistent with nephrotic syndrome. These findings link the faulty mtDNA synthesis to severe inflammatory disease and thus show that defective mtDNA replication can trigger an immune response that causes age-associated progressive pathology in the kidney.


Assuntos
Nefropatias , Doenças Mitocondriais , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Rim/metabolismo , Nefropatias/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Mutação
5.
Proteomics ; 24(20): e2300591, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126128

RESUMO

INSC94Y transgenic pigs represent a model for mutant insulin gene-induced diabetes of youth, with impaired insulin secretion and beta cell loss, leading to elevated fasting blood glucose levels. A key complication of diabetes mellitus is diabetic retinopathy (DR), characterized by hyperglycemia-induced abnormalities in the retina. Adjacent to the retina lies the vitreous, a gelatinous matrix vital for ocular function. It harbors proteins and signaling molecules, offering insights into vitreous biology and ocular health. Moreover, as a reservoir for secreted molecules, the vitreous illuminates molecular processes within intraocular structures, especially under pathological conditions. To uncover the proteomic profile of porcine vitreous and explore its relevance to DR, we employed discovery proteomics to compare vitreous samples from INSC94Y transgenic pigs and wild-type controls. Our analysis identified 1404 proteins, with 266 showing differential abundance in INSC94Y vitreous. Notably, the abundances of ITGB1, COX2, and GRIFIN were significantly elevated in INSC94Y vitreous. Gene Set Enrichment Analysis unveiled heightened MYC and mTORC1 signaling in INSC94Y vitreous, shedding light on its biological significance in diabetes-associated ocular pathophysiology. These findings deepen our understanding of vitreous involvement in DR and provide valuable insights into potential therapeutic targets. Raw data are accessible via ProteomeXchange (PXD038198).


Assuntos
Animais Geneticamente Modificados , Retinopatia Diabética , Modelos Animais de Doenças , Insulina , Proteoma , Proteômica , Corpo Vítreo , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Suínos , Corpo Vítreo/metabolismo , Proteoma/metabolismo , Proteoma/análise , Proteoma/genética , Proteômica/métodos , Insulina/metabolismo
6.
Am J Transplant ; 24(8): 1395-1405, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38432328

RESUMO

Allogeneic intraportal islet transplantation (ITx) has become an established treatment for patients with poorly controlled type 1 diabetes. However, the loss of viable beta-cell mass after transplantation remains a major challenge. Therefore, noninvasive imaging methods for long-term monitoring of the transplant fate are required. In this study, [68Ga]Ga-DOTA-exendin-4 positron emission tomography/computed tomography (PET/CT) was used for repeated monitoring of allogeneic neonatal porcine islets (NPI) after intraportal transplantation into immunosuppressed genetically diabetic pigs. NPI transplantation (3320-15,000 islet equivalents per kg body weight) led to a reduced need for exogenous insulin therapy and finally normalization of blood glucose levels in 3 out of 4 animals after 5 to 10 weeks. Longitudinal PET/CT measurements revealed a significant increase in standard uptake values in graft-bearing livers. Histologic analysis confirmed the presence of well-engrafted, mature islet clusters in the transplanted livers. Our study presents a novel large animal model for allogeneic intraportal ITx. A relatively small dose of NPIs was sufficient to normalize blood glucose levels in a clinically relevant diabetic pig model. [68Ga]Ga-DOTA-exendin-4 PET/CT proved to be efficacious for longitudinal monitoring of islet transplants. Thus, it could play a crucial role in optimizing ITx as a curative therapy for type 1 diabetes.


Assuntos
Animais Recém-Nascidos , Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Transplante das Ilhotas Pancreáticas/métodos , Suínos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Ilhotas Pancreáticas/diagnóstico por imagem , Diabetes Mellitus Tipo 1/cirurgia , Sobrevivência de Enxerto , Glicemia/análise
7.
Basic Res Cardiol ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404904

RESUMO

Chronic kidney disease (CKD) predisposes to cardiac remodeling and coronary microvascular dysfunction. Studies in swine identified changes in microvascular structure and function, as well as changes in mitochondrial structure and oxidative stress. However, CKD was combined with metabolic derangement, thereby obscuring the contribution of CKD alone. Therefore, we studied the impact of CKD on the heart and combined proteome studies with measurement of cardiac function and perfusion to identify processes involved in cardiac remodeling in CKD. CKD was induced in swine at 10-12 weeks of age while sham-operated swine served as controls. 5-6 months later, left ventricular (LV) function and coronary flow reserve were measured. LC-MS-MS-based proteomic analysis of LV tissue was performed. LV myocardium and kidneys were histologically examined for interstitial fibrosis and oxidative stress. Renal embolization resulted in mild chronic kidney injury (increased fibrosis and urinary NGAL). PV loops showed LV dilation and increased wall stress, while preload recruitable stroke work was impaired in CKD. Quantitative proteomic analysis of LV myocardium and STRING pre-ranked functional analysis showed enrichments in pathways related to contractile function, reactive oxygen species, and extracellular matrix (ECM) remodeling, which were confirmed histologically and associated with impaired total anti-oxidant capacity. H2O2 exposure of myocardial slices from CKD, but not normal swine, impaired contractile function. Furthermore, in CKD, mitochondrial proteins were downregulated suggesting mitochondrial dysfunction which was associated with higher basal coronary blood flow. Thus, mild CKD induces alterations in mitochondrial proteins along with contractile proteins, oxidative stress and ECM remodeling, that were associated with changes in cardiac function and perfusion.

8.
Xenotransplantation ; 31(3): e12861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818852

RESUMO

BACKGROUND: Preoperative size matching is essential for both allogeneic and xenogeneic heart transplantation. In preclinical pig-to-baboon xenotransplantation experiments, porcine donor organs are usually matched to recipients by using indirect parameters, such as age and total body weight. For clinical use of xenotransplantation, a more precise method of size measurement would be desirable to guarantee a "perfect match." Here, we investigated the use of transthoracic echocardiography (TTE) and described a new method to estimate organ size prior to xenotransplantation. METHODS: Hearts from n = 17 genetically modified piglets were analyzed by TTE and total heart weight (THW) was measured prior to xenotransplantation into baboons between March 2018 and April 2022. Left ventricular (LV) mass was calculated according to the previously published method by Devereux et al. and a newly adapted formula. Hearts from n = 5 sibling piglets served as controls for the determination of relative LV and right ventricular (RV) mass. After explantation, THW and LV and RV mass were measured. RESULTS: THW correlated significantly with donor age and total body weight. The strongest correlation was found between THW and LV mass calculated by TTE. Compared to necropsy data of the control piglets, the Devereux formula underestimated both absolute and relative LV mass, whereas the adapted formula yielded better results. Combining the adapted formula and the relative LV mass data, THW can be predicted with TTE. CONCLUSIONS: We demonstrate reliable LV mass estimation by TTE for size matching prior to xenotransplantation. An adapted formula provides more accurate results of LV mass estimation than the generally used Devereux formula in the xenotransplantation setting. TTE measurement of LV mass is superior for the prediction of porcine heart sizes compared to conventional parameters such as age and total body weight.


Assuntos
Ecocardiografia , Transplante de Coração , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Coração/métodos , Ecocardiografia/métodos , Suínos , Tamanho do Órgão , Papio , Xenoenxertos , Animais Geneticamente Modificados , Coração/anatomia & histologia
9.
Xenotransplantation ; 31(2): e12858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646921

RESUMO

One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well-suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.


Assuntos
Variação Genética , Suínos , Transplante Heterólogo , Nova Zelândia , Suínos/genética , Animais , Masculino , Feminino , Humanos , Coração/anatomia & histologia , Coração/diagnóstico por imagem , Ecocardiografia , Genótipo , Homozigoto
10.
Xenotransplantation ; 31(1): e12841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38864375

RESUMO

INTRODUCTION: Orthotopic cardiac xenotransplantation has seen notable improvement, leading to the first compassionate use in 2022. However, it remains challenging to define the clinical application of cardiac xenotransplantation, including the back-up strategy in case of xenograft failure. In this regard, the heterotopic thoracic technique could be an alternative to the orthotopic procedure. We present hemodynamic data of heterotopic thoracic pig-to-baboon transplantation experiments, focusing on perioperative xenograft dysfunction and xenograft overgrowth. METHODS: We used 17 genetically modified piglets as donors for heterotopic thoracic xenogeneic cardiac transplantation into captive-bred baboons. In all animals, pressure probes were implanted in the graft's left ventricle and the recipient's ascending aorta and hemodynamic data (graft pressure, aortic pressure and recipient's heart rate) were recorded continuously. RESULTS: Aortic pressures and heart rates of the recipients' hearts were postoperatively stable in all experiments. After reperfusion, three grafts presented with low left ventricular pressure indicating perioperative cardiac dysfunction (PCXD). These animals recovered from PCXD within 48 h under support of the recipient's heart and there was no difference in survival compared to the other 14 ones. After 48 h, graft pressure increased up to 200 mmHg in all 17 animals with two different time-patterns. This led to a progressive gradient between graft and aortic pressure. With increasing gradient, the grafts stopped contributing to cardiac output. Grafts showed a marked weight increase from implantation to explantation. CONCLUSION: The heterotopic thoracic cardiac xenotransplantation technique is a possible method to overcome PCXD in early clinical trials and an experimental tool to get a better understanding of PCXD. The peculiar hemodynamic situation of increasing graft pressure but missing graft's output indicates outflow tract obstruction due to cardiac overgrowth. The heterotopic thoracic technique should be successful when using current strategies of immunosuppression, organ preservation and donor pigs with smaller body and organ size.


Assuntos
Transplante de Coração , Hemodinâmica , Xenoenxertos , Papio , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Coração/métodos , Suínos , Hemodinâmica/fisiologia , Sobrevivência de Enxerto , Transplante Heterotópico/métodos , Animais Geneticamente Modificados , Rejeição de Enxerto , Humanos
11.
Xenotransplantation ; 31(4): e12877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077824

RESUMO

INTRODUCTION: Inflammatory responses and coagulation disorders are a relevant challenge for successful cardiac xenotransplantation on its way to the clinic. To cope with this, an effective and clinically practicable anti-inflammatory and anti-coagulatory regimen is needed. The inflammatory and coagulatory response can be reduced by genetic engineering of the organ-source pigs. Furthermore, there are several therapeutic strategies to prevent or reduce inflammatory responses and coagulation disorders following xenotransplantation. However, it is still unclear, which combination of drugs should be used in the clinical setting. To elucidate this, we present data from pig-to-baboon orthotopic cardiac xenotransplantation experiments using a combination of several anti-inflammatory drugs. METHODS: Genetically modified piglets (GGTA1-KO, hCD46/hTBM transgenic) were used for orthotopic cardiac xenotransplantation into captive-bred baboons (n = 14). All animals received an anti-inflammatory drug therapy including a C1 esterase inhibitor, an IL-6 receptor antagonist, a TNF-α inhibitor, and an IL-1 receptor antagonist. As an additive medication, acetylsalicylic acid and unfractionated heparin were administered. The immunosuppressive regimen was based on CD40/CD40L co-stimulation blockade. During the experiments, leukocyte counts, levels of C-reactive protein (CRP) as well as systemic cytokine and chemokine levels and coagulation parameters were assessed at multiple timepoints. Four animals were excluded from further data analyses due to porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) infections (n = 2) or technical failures (n = 2). RESULTS: Leukocyte counts showed a relevant perioperative decrease, CRP levels an increase. In the postoperative period, leukocyte counts remained consistently within normal ranges, CRP levels showed three further peaks after about 35, 50, and 80 postoperative days. Analyses of cytokines and chemokines revealed different patterns. Some cytokines, like IL-8, increased about 2-fold in the perioperative period, but then decreased to levels comparable to the preoperative values or even lower. Other cytokines, such as IL-12/IL-23, decreased in the perioperative period and stayed at these levels. Besides perioperative decreases, there were no relevant alterations observed in coagulation parameters. In summary, all parameters showed an unremarkable course with regard to inflammatory responses and coagulation disorders following cardiac xenotransplantation and thus showed the effectiveness of our approach. CONCLUSION: Our preclinical experience with the anti-inflammatory drug therapy proved that controlling of inflammation and coagulation disorders in xenotransplantation is possible and well-practicable under the condition that transmission of pathogens, especially of PCMV/PRV to the recipient is prevented because PCMV/PRV also induces inflammation and coagulation disorders. Our anti-inflammatory regimen should also be applicable and effective in the clinical setting of cardiac xenotransplantation.


Assuntos
Animais Geneticamente Modificados , Transplante de Coração , Inflamação , Papio , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Coração/métodos , Suínos , Inflamação/imunologia , Coagulação Sanguínea/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Xenoenxertos/imunologia , Galactosiltransferases/genética , Imunossupressores/farmacologia , Citocinas/metabolismo
12.
Cell ; 137(5): 961-71, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19490899

RESUMO

It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.


Assuntos
Substituição de Aminoácidos , Gânglios da Base/metabolismo , Evolução Biológica , Fatores de Transcrição Forkhead/metabolismo , Vocalização Animal , Animais , Dendritos/metabolismo , Dopamina/metabolismo , Expressão Gênica , Heterozigoto , Humanos , Idioma , Depressão Sináptica de Longo Prazo , Camundongos , Vias Neurais , Plasticidade Neuronal , Fala
13.
Nature ; 564(7736): 430-433, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518863

RESUMO

Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need1-3. Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative4. Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons5. This model demonstrated long-term acceptance of discordant xenografts with safe immunosuppression but did not predict their life-supporting function. Despite 25 years of extensive research, the maximum survival of a baboon after heart replacement with a porcine xenograft was only 57 days and this was achieved, to our knowledge, only once6. Here we show that α1,3-galactosyltransferase-knockout pig hearts that express human CD46 and thrombomodulin require non-ischaemic preservation with continuous perfusion and control of post-transplantation growth to ensure long-term orthotopic function of the xenograft in baboons, the most stringent preclinical xenotransplantation model. Consistent life-supporting function of xenografted hearts for up to 195 days is a milestone on the way to clinical cardiac xenotransplantation7.


Assuntos
Transplante de Coração , Xenoenxertos/transplante , Papio , Suínos , Transplante Heterólogo , Animais , Anticorpos/análise , Anticorpos/sangue , Proteínas do Sistema Complemento/análise , Enzimas/sangue , Fibrina/análise , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Xenoenxertos/patologia , Humanos , Fígado/enzimologia , Masculino , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Miocárdio/enzimologia , Necrose , Perfusão , Contagem de Plaquetas , Tempo de Protrombina , Trombomodulina/genética , Trombomodulina/metabolismo , Fatores de Tempo
14.
Pituitary ; 27(5): 567-576, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960990

RESUMO

PURPOSE: Growth hormone (GH) is a central regulator of ß-cell proliferation, insulin secretion and sensitivity. Aim of this study was to investigate the effect of GH insensitivity on pancreatic ß-cell histomorphology and consequences for metabolism in vivo. METHODS: Pancreata from pigs with growth hormone receptor deficiency (GHR-KO, n = 12) were analyzed by unbiased quantitative stereology in comparison to wild-type controls (WT, n = 12) at 3 and 7-8.5 months of age. In vivo secretion capacity for insulin and glucose tolerance were assessed by intravenous glucose tolerance tests (ivGTTs) in GHR-KO (n = 3) and WT (n = 3) pigs of the respective age groups. RESULTS: Unbiased quantitative stereological analyses revealed a significant reduction in total ß-cell volume (83% and 73% reduction in young and adult GHR-KO vs. age-matched WT pigs; p < 0.0001) and volume density of ß-cells in the pancreas of GHR-KO pigs (42% and 39% reduction in young and adult GHR-KO pigs; p = 0.0018). GHR-KO pigs displayed a significant, age-dependent increase in the proportion of isolated ß-cells in the pancreas (28% in young and 97% in adult GHR-KO vs. age-matched WT pigs; p = 0.0009). Despite reduced insulin secretion in ivGTTs, GHR-KO pigs maintained normal glucose tolerance. CONCLUSION: GH insensitivity in GHR-KO pigs leads to decreased ß-cell volume and volume proportion of ß-cells in the pancreas, causing a reduced insulin secretion capacity. The increased proportion of isolated ß-cells in the pancreas of GHR-KO pigs highlights the dependency on GH stimulation for proper ß-cell maturation. Preserved glucose tolerance accomplished with decreased insulin secretion indicates enhanced sensitivity for insulin in GH insensitivity.


Assuntos
Teste de Tolerância a Glucose , Hormônio do Crescimento , Secreção de Insulina , Células Secretoras de Insulina , Insulina , Animais , Células Secretoras de Insulina/metabolismo , Suínos , Insulina/metabolismo , Hormônio do Crescimento/metabolismo , Secreção de Insulina/fisiologia , Receptores da Somatotropina/metabolismo , Masculino , Feminino , Tamanho Celular
15.
Thorac Cardiovasc Surg ; 72(4): 273-284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38154473

RESUMO

This report comprises the contents of the presentations and following discussions of a workshop of the German Heart Transplant Centers in Martinsried, Germany on cardiac xenotransplantation. The production and current availability of genetically modified donor pigs, preservation techniques during organ harvesting, and immunosuppressive regimens in the recipient are described. Selection criteria for suitable patients and possible solutions to the problem of overgrowth of the xenotransplant are discussed. Obviously microbiological safety for the recipient and close contacts is essential, and ethical considerations to gain public acceptance for clinical applications are addressed. The first clinical trial will be regulated and supervised by the Paul-Ehrlich-Institute as the National Competent Authority for Germany, and the German Heart Transplant Centers agreed to cooperatively select the first patients for cardiac xenotransplantation.


Assuntos
Sobrevivência de Enxerto , Transplante de Coração , Xenoenxertos , Imunossupressores , Transplante Heterólogo , Animais , Transplante de Coração/efeitos adversos , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Resultado do Tratamento , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/imunologia , Animais Geneticamente Modificados , Fatores de Risco , Alemanha , Suínos , Seleção de Pacientes
16.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658378

RESUMO

Genetically modified animals continue to provide important insights into the molecular basis of health and disease. Research has focused mostly on genetically modified mice, although other species like pigs resemble the human physiology more closely. In addition, cross-species comparisons with phylogenetically distant species such as chickens provide powerful insights into fundamental biological and biomedical processes. One of the most versatile genetic methods applicable across species is CRISPR-Cas9. Here, we report the generation of transgenic chickens and pigs that constitutively express Cas9 in all organs. These animals are healthy and fertile. Functionality of Cas9 was confirmed in both species for a number of different target genes, for a variety of cell types and in vivo by targeted gene disruption in lymphocytes and the developing brain, and by precise excision of a 12.7-kb DNA fragment in the heart. The Cas9 transgenic animals will provide a powerful resource for in vivo genome editing for both agricultural and translational biomedical research, and will facilitate reverse genetics as well as cross-species comparisons.


Assuntos
Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas , Galinhas/genética , Edição de Genes , Gado/genética , Suínos/genética , Animais
17.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508004

RESUMO

ß cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of ß cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo-labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.


Assuntos
Animais Geneticamente Modificados/metabolismo , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Exocitose , Glucose/metabolismo , Secreção de Insulina , Masculino , Suínos
18.
Blood ; 137(14): 1932-1944, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512427

RESUMO

Vacuolar protein sorting 45 homolog (VPS45), a member of the Sec1/Munc18 (SM) family, has been implicated in the regulation of endosomal trafficking. VPS45 deficiency in human patients results in congenital neutropenia, bone marrow fibrosis, and extramedullary renal hematopoiesis. Detailed mechanisms of the VPS45 function are unknown. Here, we show an essential role of mammalian VPS45 in maintaining the intracellular organization of endolysosomal vesicles and promoting recycling of cell-surface receptors. Loss of VPS45 causes defective Rab5-to-Rab7 conversion resulting in trapping of cargos in early endosomes and impaired delivery to lysosomes. In this context, we demonstrate aberrant trafficking of the granulocyte colony-stimulating factor receptor in the absence of VPS45. Furthermore, we find that lack of VPS45 in mice is not compatible with embryonic development. Thus, we identify mammalian VPS45 as a critical regulator of trafficking through the endosomal system and early embryogenesis of mice.


Assuntos
Endossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Endossomos/genética , Deleção de Genes , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Camundongos Knockout , Transporte Proteico , Proteínas de Transporte Vesicular/genética
19.
FASEB J ; 36(6): e22337, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35486003

RESUMO

The mammalian blastocyst undergoes two lineage segregations, that is, formation of the trophectoderm and subsequently differentiation of the hypoblast (HB) from the inner cell mass, leaving the epiblast (EPI) as the remaining pluripotent lineage. To clarify the expression patterns of markers specific for these lineages in bovine embryos, we analyzed day 7, 9, and 12 blastocysts completely produced in vivo by staining for OCT4, NANOG, SOX2 (EPI), and GATA6, SOX17 (HB) and identified genes specific for these developmental stages in a global transcriptomics approach. To study the role of OCT4, we generated OCT4-deficient (OCT4 KO) embryos via somatic cell nuclear transfer or in vitro fertilization. OCT4 KO embryos reached the expanded blastocyst stage by day 8 but lost NANOG and SOX17 expression, while SOX2 and GATA6 were unaffected. Blastocysts transferred to recipient cows from day 6 to 9 expanded, but the OCT4 KO phenotype was not rescued by the uterine environment. Exposure of OCT4 KO embryos to exogenous FGF4 or chimeric complementation with OCT4 intact embryos did not restore NANOG or SOX17 in OCT4-deficient cells. Our data show that OCT4 is required cell autonomously for the maintenance of pluripotency of the EPI and differentiation of the HB in bovine embryos.


Assuntos
Blastocisto , Regulação da Expressão Gênica no Desenvolvimento , Animais , Blastocisto/metabolismo , Bovinos , Diferenciação Celular/genética , Feminino , Genes Homeobox , Camadas Germinativas , Mamíferos/genética
20.
Xenotransplantation ; 30(4): e12803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120823

RESUMO

Porcine cytomegalovirus (PCMV) is widely distributed in pigs and difficult to detect due to latency. PCMV infection of source pigs was associated with early graft failure after cardiac and renal xenotransplantation into nonhuman primates. Importantly, PCMV infection of the first genetically modified pig heart into a human may have contributed to the reduced survival of the patient. Sensitive and reliable assays for detection of latent PCMV infection are thus indispensable. Here, we report the development of five peptide-induced rabbit antisera specific for PCMV glycoprotein B (gB) and their validation for detection of PCMV in infected pig fallopian tube (PFT) cells by immunofluorescence and electron microscopy (EM). The anti-gB antibodies were also used for detection by Western blot analysis of PCMV purified from the supernatant of infected PFT cells. Sera of infected versus non-infected pigs have been compared. In parallel, PCMV viral load in blood samples of the animals was quantified by a novel highly sensitive nested-PCR and qPCR assay. A combination of four partly overlapping peptides from the gB C-terminus was used to establish a diagnostic ELISA for PCMV gB specific pig antibodies which is able to differentiate infected from non-infected animals and to quantify maternal antibodies in neonates. The combination of a highly sensitive nested PCR for direct virus detection with a sensitive peptide-based ELISA detecting anti-PCMV gB-antibodies, supplemented by Western blot analysis and/or immunohistochemistry for virus detection will reliably differentiate pigs with active infection, latently infected pigs, and non-infected pigs. It may significantly improve the virologic safety of xenotransplantation.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Feminino , Animais , Suínos , Humanos , Coelhos , Citomegalovirus/genética , Transplante Heterólogo , Infecções por Citomegalovirus/diagnóstico , Reação em Cadeia da Polimerase , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA