Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Cell Biochem ; 124(3): 396-408, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748954

RESUMO

Altered expression and functional roles of the transcribed ultraconserved regions (T-UCRs), as genomic sequences with 100% conservation between the genomes of human, mouse, and rat, in the pathophysiology of neoplasms has already been investigated. Nevertheless, the relevance of the functions for T-UCRs in gastric cancer (GC) is still the subject of inquiry. In the current study, we first used a genome-wide profiling approach to analyze the expression of T-UCRs in GC patients. Then, we constructed a three-component regulatory network and investigated potential diagnostic and prognostic values of the T-UCRs. The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) dataset was used as a resource for the RNA-sequencing data. FeatureCounts was utilized to quantify the number of reads mapped to each T-UCR. Differential expression analysis was then conducted using DESeq2. In the following, interactions between T-UCRs, microRNAs (miRNAs), and messenger RNAs (mRNAs) were combined into a three-component network. Enrichment analyses were performed and a protein-protein interaction (PPI) network was constructed. The R Survival package was utilized to identify survival-related significantly differentially expressed T-UCRs (DET-UCRs). Using an in-house cohort of GC tissues, expression of two DET-UCRs was furthermore experimentally verified. Our results showed that several T-UCRs were dysregulated in TCGA-STAD tumoral samples compared to nontumoral counterparts. The three-component network was constructed which composed of DET-UCRs, miRNAs, and mRNAs nodes. Functional enrichment and PPI network analyses revealed important enriched signaling pathways and gene ontologies such as "pathway in cancer" and regulation of cell proliferation and apoptosis. Five T-UCRs were significantly correlated with the overall survival of GC patients. While no expression of uc.232 was observed in our in-house cohort of GC tissues, uc.343 showed an increased expression, although not statistically significant, in gastric tumoral tissues. The constructed three-component regulatory network of T-UCRs in GC presents a comprehensive understanding of the underlying gene expression regulation processes involved in tumor development and can serve as a basis to investigate potential prognostic biomarkers and therapeutic targets.


Assuntos
Adenocarcinoma , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Ratos , Camundongos , Animais , Neoplasias Gástricas/genética , Prognóstico , Sequência Conservada/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Adenocarcinoma/genética , Biomarcadores , Redes Reguladoras de Genes , Biomarcadores Tumorais/genética
2.
Cytotherapy ; 25(6): 640-652, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890093

RESUMO

Backgound Aims: This meta-analysis aims at summarizing the whole body of research on cell therapies for acute myocardial infarction (MI) in the mouse model to bring forward ongoing research in this field of regenerative medicine. Despite rather modest effects in clinical trials, pre-clinical studies continue to report beneficial effects of cardiac cell therapies for cardiac repair following acute ischemic injury. Results: The authors' meta-analysis of data from 166 mouse studies comprising 257 experimental groups demonstrated a significant improvement in left ventricular ejection fraction of 10.21% after cell therapy compared with control animals. Subgroup analysis indicated that second-generation cell therapies such as cardiac progenitor cells and pluripotent stem cell derivatives had the highest therapeutic potential for minimizing myocardial damage post-MI. Conclusions: Whereas the vision of functional tissue replacement has been replaced by the concept of regional scar modulation in most of the investigated studies, rather basic methods for assessing cardiac function were most frequently used. Hence, future studies will highly benefit from integrating methods for assessment of regional wall properties to evolve a deeper understanding of how to modulate cardiac healing after acute MI.


Assuntos
Infarto do Miocárdio , Função Ventricular Esquerda , Animais , Camundongos , Volume Sistólico , Coração , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos
3.
Cell Mol Life Sci ; 79(3): 149, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35199227

RESUMO

The in vitro generation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC) is of great importance for cardiac disease modeling, drug-testing applications and for regenerative medicine. Despite the development of various cultivation strategies, a sufficiently high degree of maturation is still a decisive limiting factor for the successful application of these cardiac cells. The maturation process includes, among others, the proper formation of sarcomere structures, mediating the contraction of cardiomyocytes. To precisely monitor the maturation of the contractile machinery, we have established an imaging-based strategy that allows quantitative evaluation of important parameters, defining the quality of the sarcomere network. iPSC-derived cardiomyocytes were subjected to different culture conditions to improve sarcomere formation, including prolonged cultivation time and micro patterned surfaces. Fluorescent images of α-actinin were acquired using super-resolution microscopy. Subsequently, we determined cell morphology, sarcomere density, filament alignment, z-Disc thickness and sarcomere length of iPSC-derived cardiomyocytes. Cells from adult and neonatal heart tissue served as control. Our image analysis revealed a profound effect on sarcomere content and filament orientation when iPSC-derived cardiomyocytes were cultured on structured, line-shaped surfaces. Similarly, prolonged cultivation time had a beneficial effect on the structural maturation, leading to a more adult-like phenotype. Automatic evaluation of the sarcomere filaments by machine learning validated our data. Moreover, we successfully transferred this approach to skeletal muscle cells, showing an improved sarcomere formation cells over different differentiation periods. Overall, our image-based workflow can be used as a straight-forward tool to quantitatively estimate the structural maturation of contractile cells. As such, it can support the establishment of novel differentiation protocols to enhance sarcomere formation and maturity.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sarcômeros/metabolismo , Actinina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Humanos , Aprendizado de Máquina , Camundongos , Microscopia de Fluorescência/métodos , Músculo Esquelético/citologia , Miocárdio/citologia , Fenótipo , RNA/genética , RNA/isolamento & purificação
4.
J Med Internet Res ; 25: e45948, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486754

RESUMO

The vast and heterogeneous data being constantly generated in clinics can provide great wealth for patients and research alike. The quickly evolving field of medical informatics research has contributed numerous concepts, algorithms, and standards to facilitate this development. However, these difficult relationships, complex terminologies, and multiple implementations can present obstacles for people who want to get active in the field. With a particular focus on medical informatics research conducted in Germany, we present in our Viewpoint a set of 10 important topics to improve the overall interdisciplinary communication between different stakeholders (eg, physicians, computational experts, experimentalists, students, patient representatives). This may lower the barriers to entry and offer a starting point for collaborations at different levels. The suggested topics are briefly introduced, then general best practice guidance is given, and further resources for in-depth reading or hands-on tutorials are recommended. In addition, the topics are set to cover current aspects and open research gaps of the medical informatics domain, including data regulations and concepts; data harmonization and processing; and data evaluation, visualization, and dissemination. In addition, we give an example on how these topics can be integrated in a medical informatics curriculum for higher education. By recognizing these topics, readers will be able to (1) set clinical and research data into the context of medical informatics, understanding what is possible to achieve with data or how data should be handled in terms of data privacy and storage; (2) distinguish current interoperability standards and obtain first insights into the processes leading to effective data transfer and analysis; and (3) value the use of newly developed technical approaches to utilize the full potential of clinical data.


Assuntos
Informática Médica , Humanos , Currículo , Algoritmos , Alemanha
5.
Cell Mol Life Sci ; 78(19-20): 6585-6592, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34427691

RESUMO

Single-cell RNA-sequencing (scRNA-seq) provides high-resolution insights into complex tissues. Cardiac tissue, however, poses a major challenge due to the delicate isolation process and the large size of mature cardiomyocytes. Regardless of the experimental technique, captured cells are often impaired and some capture sites may contain multiple or no cells at all. All this refers to "low quality" potentially leading to data misinterpretation. Common standard quality control parameters involve the number of detected genes, transcripts per cell, and the fraction of transcripts from mitochondrial genes. While cutoffs for transcripts and genes per cell are usually user-defined for each experiment or individually calculated, a fixed threshold of 5% mitochondrial transcripts is standard and often set as default in scRNA-seq software. However, this parameter is highly dependent on the tissue type. In the heart, mitochondrial transcripts comprise almost 30% of total mRNA due to high energy demands. Here, we demonstrate that a 5%-threshold not only causes an unacceptable exclusion of cardiomyocytes but also introduces a bias that particularly discriminates pacemaker cells. This effect is apparent for our in vitro generated induced-sinoatrial-bodies (iSABs; highly enriched physiologically functional pacemaker cells), and also evident in a public data set of cells isolated from embryonal murine sinoatrial node tissue (Goodyer William et al. in Circ Res 125:379-397, 2019). Taken together, we recommend omitting this filtering parameter for scRNA-seq in cardiovascular applications whenever possible.


Assuntos
RNA Mitocondrial/genética , RNA Citoplasmático Pequeno/genética , Análise de Célula Única/métodos , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Miócitos Cardíacos/fisiologia , Controle de Qualidade , RNA Mensageiro/genética , Análise de Sequência de RNA , Software , Sequenciamento do Exoma/métodos
6.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233137

RESUMO

The current generation of sequencing technologies has led to significant advances in identifying novel disease-associated mutations and generated large amounts of data in a high-throughput manner. Such data in conjunction with clinical routine data are proven to be highly useful in deriving population-level and patient-level predictions, especially in the field of cancer precision medicine. However, data harmonization across multiple national and international clinical sites is an essential step for the assessment of events and outcomes associated with patients, which is currently not adequately addressed. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an internationally established research data repository introduced by the Observational Health Data Science and Informatics (OHDSI) community to overcome this issue. To address the needs of cancer research, the genomic vocabulary extension was introduced in 2020 to support the standardization of subsequent data analysis. In this review, we evaluate the current potential of the OMOP CDM to be applicable in cancer prediction and how comprehensively the genomic vocabulary extension of the OMOP can serve current needs of AI-based predictions. For this, we systematically screened the literature for articles that use the OMOP CDM in predictive analyses in cancer and investigated the underlying predictive models/tools. Interestingly, we found 248 articles, of which most use the OMOP for harmonizing their data, but only 5 make use of predictive algorithms on OMOP-based data and fulfill our criteria. The studies present multicentric investigations, in which the OMOP played an essential role in discovering and optimizing machine learning (ML)-based models. Ultimately, the use of the OMOP CDM leads to standardized data-driven studies for multiple clinical sites and enables a more solid basis utilizing, e.g., ML models that can be reused and combined in early prediction, diagnosis, and improvement of personalized cancer care and biomarker discovery.


Assuntos
Informática Médica , Neoplasias , Biomarcadores , Análise de Dados , Bases de Dados Factuais , Registros Eletrônicos de Saúde , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão
7.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012110

RESUMO

Ventricular arrhythmias associated with myocardial infarction (MI) have a significant impact on mortality in patients following heart attack. Therefore, targeted reduction of arrhythmia represents a therapeutic approach for the prevention and treatment of severe events after infarction. Recent research transplanting mesenchymal stem cells (MSC) showed their potential in MI therapy. Our study aimed to investigate the effects of MSC injection on post-infarction arrhythmia. We used our murine double infarction model, which we previously established, to more closely mimic the clinical situation and intramyocardially injected hypoxic pre-conditioned murine MSC to the infarction border. Thereafter, various types of arrhythmias were recorded and analyzed. We observed a homogenous distribution of all types of arrhythmias after the first infarction, without any significant differences between the groups. Yet, MSC therapy after double infarction led to a highly significant reduction in simple and complex arrhythmias. Moreover, RNA-sequencing of samples from stem cell treated mice after re-infarction demonstrated a significant decline in most arrhythmias with reduced inflammatory pathways. Additionally, following stem-cell therapy we found numerous highly expressed genes to be either linked to lowering the risk of heart failure, cardiomyopathy or sudden cardiac death. Moreover, genes known to be associated with arrhythmogenesis and key mutations underlying arrhythmias were downregulated. In summary, our stem-cell therapy led to a reduction in cardiac arrhythmias after MI and showed a downregulation of already established inflammatory pathways. Furthermore, our study reveals gene regulation pathways that have a potentially direct influence on arrhythmogenesis after myocardial infarction.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/terapia , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia
8.
BMC Bioinformatics ; 22(1): 557, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798805

RESUMO

BACKGROUND: The research landscape of single-cell and single-nuclei RNA-sequencing is evolving rapidly. In particular, the area for the detection of rare cells was highly facilitated by this technology. However, an automated, unbiased, and accurate annotation of rare subpopulations is challenging. Once rare cells are identified in one dataset, it is usually necessary to generate further specific datasets to enrich the analysis (e.g., with samples from other tissues). From a machine learning perspective, the challenge arises from the fact that rare-cell subpopulations constitute an imbalanced classification problem. We here introduce a Machine Learning (ML)-based oversampling method that uses gene expression counts of already identified rare cells as an input to generate synthetic cells to then identify similar (rare) cells in other publicly available experiments. We utilize single-cell synthetic oversampling (sc-SynO), which is based on the Localized Random Affine Shadowsampling (LoRAS) algorithm. The algorithm corrects for the overall imbalance ratio of the minority and majority class. RESULTS: We demonstrate the effectiveness of our method for three independent use cases, each consisting of already published datasets. The first use case identifies cardiac glial cells in snRNA-Seq data (17 nuclei out of 8635). This use case was designed to take a larger imbalance ratio (~1 to 500) into account and only uses single-nuclei data. The second use case was designed to jointly use snRNA-Seq data and scRNA-Seq on a lower imbalance ratio (~1 to 26) for the training step to likewise investigate the potential of the algorithm to consider both single-cell capture procedures and the impact of "less" rare-cell types. The third dataset refers to the murine data of the Allen Brain Atlas, including more than 1 million cells. For validation purposes only, all datasets have also been analyzed traditionally using common data analysis approaches, such as the Seurat workflow. CONCLUSIONS: In comparison to baseline testing without oversampling, our approach identifies rare-cells with a robust precision-recall balance, including a high accuracy and low false positive detection rate. A practical benefit of our algorithm is that it can be readily implemented in other and existing workflows. The code basis in R and Python is publicly available at FairdomHub, as well as GitHub, and can easily be transferred to identify other rare-cell types.


Assuntos
RNA , Análise de Célula Única , Animais , Análise por Conglomerados , Aprendizado de Máquina , Camundongos , RNA/genética , Análise de Sequência de RNA
9.
J Allergy Clin Immunol ; 145(4): 1208-1218, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31707051

RESUMO

BACKGROUND: Fifteen percent of atopic dermatitis (AD) liability-scale heritability could be attributed to 31 susceptibility loci identified by using genome-wide association studies, with only 3 of them (IL13, IL-6 receptor [IL6R], and filaggrin [FLG]) resolved to protein-coding variants. OBJECTIVE: We examined whether a significant portion of unexplained AD heritability is further explained by low-frequency and rare variants in the gene-coding sequence. METHODS: We evaluated common, low-frequency, and rare protein-coding variants using exome chip and replication genotype data of 15,574 patients and 377,839 control subjects combined with whole-transcriptome data on lesional, nonlesional, and healthy skin samples of 27 patients and 38 control subjects. RESULTS: An additional 12.56% (SE, 0.74%) of AD heritability is explained by rare protein-coding variation. We identified docking protein 2 (DOK2) and CD200 receptor 1 (CD200R1) as novel genome-wide significant susceptibility genes. Rare coding variants associated with AD are further enriched in 5 genes (IL-4 receptor [IL4R], IL13, Janus kinase 1 [JAK1], JAK2, and tyrosine kinase 2 [TYK2]) of the IL13 pathway, all of which are targets for novel systemic AD therapeutics. Multiomics-based network and RNA sequencing analysis revealed DOK2 as a central hub interacting with, among others, CD200R1, IL6R, and signal transducer and activator of transcription 3 (STAT3). Multitissue gene expression profile analysis for 53 tissue types from the Genotype-Tissue Expression project showed that disease-associated protein-coding variants exert their greatest effect in skin tissues. CONCLUSION: Our discoveries highlight a major role of rare coding variants in AD acting independently of common variants. Further extensive functional studies are required to detect all potential causal variants and to specify the contribution of the novel susceptibility genes DOK2 and CD200R1 to overall disease susceptibility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Dermatite Atópica/genética , Genótipo , Receptores de Orexina/genética , Fosfoproteínas/genética , Pele/metabolismo , Adulto , Estudos de Coortes , Proteínas Filagrinas , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Especificidade de Órgãos , Polimorfismo Genético , Risco , Transcriptoma
10.
Nucleic Acids Res ; 45(W1): W560-W566, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28582575

RESUMO

RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis. AVAILABILITY: The RNA workbench is available at https://github.com/bgruening/galaxy-rna-workbench.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/química , Análise de Sequência de RNA/métodos , Software , Biologia Computacional , Internet , Conformação de Ácido Nucleico , RNA/metabolismo , RNA não Traduzido/química , Fluxo de Trabalho
11.
Cell Physiol Biochem ; 42(1): 254-268, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28535507

RESUMO

AIMS: Stem cell-based regenerative therapies for the treatment of ischemic myocardium are currently a subject of intensive investigation. A variety of cell populations have been demonstrated to be safe and to exert some positive effects in human Phase I and II clinical trials, however conclusive evidence of efficacy is still lacking. While the relevance of animal models for appropriate pre-clinical safety and efficacy testing with regard to application in Phase III studies continues to increase, concerns have been expressed regarding the validity of the mouse model to predict clinical results. Against the background that hundreds of preclinical studies have assessed the efficacy of numerous kinds of cell preparations - including pluripotent stem cells - for cardiac repair, we undertook a systematic re-evaluation of data from the mouse model, which initially paved the way for the first clinical trials in this field. METHODS AND RESULTS: A systematic literature screen was performed to identify publications reporting results of cardiac stem cell therapies for the treatment of myocardial ischemia in the mouse model. Only peer-reviewed and placebo-controlled studies using magnet resonance imaging (MRI) for left ventricular ejection fraction (LVEF) assessment were included. Experimental data from 21 studies involving 583 animals demonstrate a significant improvement in LVEF of 8.59%+/- 2.36; p=.012 (95% CI, 3.7-13.8) compared with control animals. CONCLUSION: The mouse is a valid model to evaluate the efficacy of cell-based advanced therapies for the treatment of ischemic myocardial damage. Further studies are required to understand the mechanisms underlying stem cell based improvement of cardiac function after ischemia.


Assuntos
Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Terapia Baseada em Transplante de Células e Tecidos , Bases de Dados Factuais , Modelos Animais de Doenças , Coração/fisiopatologia , Humanos , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Regeneração , Função Ventricular Esquerda/fisiologia
12.
BMC Bioinformatics ; 17: 21, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26738481

RESUMO

BACKGROUND: Technical advances in Next Generation Sequencing (NGS) provide a means to acquire deeper insights into cellular functions. The lack of standardized and automated methodologies poses a challenge for the analysis and interpretation of RNA sequencing data. We critically compare and evaluate state-of-the-art bioinformatics approaches and present a workflow that integrates the best performing data analysis, data evaluation and annotation methods in a Transparent, Reproducible and Automated PipeLINE (TRAPLINE) for RNA sequencing data processing (suitable for Illumina, SOLiD and Solexa). RESULTS: Comparative transcriptomics analyses with TRAPLINE result in a set of differentially expressed genes, their corresponding protein-protein interactions, splice variants, promoter activity, predicted miRNA-target interactions and files for single nucleotide polymorphism (SNP) calling. The obtained results are combined into a single file for downstream analysis such as network construction. We demonstrate the value of the proposed pipeline by characterizing the transcriptome of our recently described stem cell derived antibiotic selected cardiac bodies ('aCaBs'). CONCLUSION: TRAPLINE supports NGS-based research by providing a workflow that requires no bioinformatics skills, decreases the processing time of the analysis and works in the cloud. The pipeline is implemented in the biomedical research platform Galaxy and is freely accessible via www.sbi.uni-rostock.de/RNAseqTRAPLINE or the specific Galaxy manual page (https://usegalaxy.org/u/mwolfien/p/trapline---manual).


Assuntos
Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de RNA/normas , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Análise de Sequência de RNA/métodos , Transcriptoma
13.
Epigenomics ; 16(3): 159-173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38282575

RESUMO

Background: Enhancer RNAs (eRNAs) are involved in gene expression regulation. Although functional roles of eRNAs in the pathophysiology of neoplasms have been reported, their involvement in gastric cancer (GC) is less known. Materials & methods: A network-based integrative approach was utilized for analyzing transcriptome and epigenome alterations in GC, and an eRNA was selected for experimental validation. Survival analysis and clinicopathological associations were also performed. Results: A hub eRNA, ENSR00000272060, showed significantly increased expression in tumor versus nontumor tissues, as well as an association with clinicopathological features. A seven-gene prognostic model was also constructed. Conclusion: The constructed network provides a comprehensive understanding of the underlying processes implicated in the progression of GC, along with a starting point from which to derive potential diagnostic/prognostic biomarkers.


What is this summary about? We provide an overview of a study on genetic materials related to stomach cancer. This study could help identify factors that change the progress of this disease. We used genetic information from a specific disease database. One of the genetic materials that was assessed is eRNA. It was examined in some samples of gastric cancer. We analyzed gastric tissues to confirm our findings. The goal of this study was to find out whether we could identify a disease-related eRNA. What were the results? We found an eRNA that showed genetic differences between examined samples. It was also related to the stage of the disease. What do the results mean? The results show that there is a difference in the amount of examined eRNA between samples. It suggests that we may be able to use it to detect the disease earlier.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma , Epigenoma , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética
14.
Sci Rep ; 14(1): 2287, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280887

RESUMO

The emergence of collaborations, which standardize and combine multiple clinical databases across different regions, provide a wealthy source of data, which is fundamental for clinical prediction models, such as patient-level predictions. With the aid of such large data pools, researchers are able to develop clinical prediction models for improved disease classification, risk assessment, and beyond. To fully utilize this potential, Machine Learning (ML) methods are commonly required to process these large amounts of data on disease-specific patient cohorts. As a consequence, the Observational Health Data Sciences and Informatics (OHDSI) collaborative develops a framework to facilitate the application of ML models for these standardized patient datasets by using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). In this study, we compare the feasibility of current web-based OHDSI approaches, namely ATLAS and "Patient-level Prediction" (PLP), against a native solution (R based) to conduct such ML-based patient-level prediction analyses in OMOP. This will enable potential users to select the most suitable approach for their investigation. Each of the applied ML solutions was individually utilized to solve the same patient-level prediction task. Both approaches went through an exemplary benchmarking analysis to assess the weaknesses and strengths of the PLP R-Package. In this work, the performance of this package was subsequently compared versus the commonly used native R-package called Machine Learning in R 3 (mlr3), and its sub-packages. The approaches were evaluated on performance, execution time, and ease of model implementation. The results show that the PLP package has shorter execution times, which indicates great scalability, as well as intuitive code implementation, and numerous possibilities for visualization. However, limitations in comparison to native packages were depicted in the implementation of specific ML classifiers (e.g., Lasso), which may result in a decreased performance for real-world prediction problems. The findings here contribute to the overall effort of developing ML-based prediction models on a clinical scale and provide a snapshot for future studies that explicitly aim to develop patient-level prediction models in OMOP CDM.


Assuntos
Aprendizado de Máquina , Informática Médica , Humanos , Bases de Dados Factuais , Registros Eletrônicos de Saúde
15.
Biomedicines ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540219

RESUMO

The use of artificial intelligence (AI) in healthcare is transforming a number of medical fields, including nephrology. The integration of various AI techniques in nephrology facilitates the prediction of the early detection, diagnosis, prognosis, and treatment of kidney disease. Nevertheless, recent reports have demonstrated that the majority of published clinical AI studies lack uniform AI reporting standards, which poses significant challenges in interpreting, replicating, and translating the studies into routine clinical use. In response to these issues, worldwide initiatives have created guidelines for publishing AI-related studies that outline the minimal necessary information that researchers should include. By following standardized reporting frameworks, researchers and clinicians can ensure the reproducibility, reliability, and ethical use of AI models. This will ultimately lead to improved research outcomes, enhanced clinical decision-making, and better patient management. This review article highlights the importance of adhering to AI reporting guidelines in medical research, with a focus on nephrology and urology, and clinical practice for advancing the field and optimizing patient care.

16.
PLoS One ; 19(1): e0297039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295046

RESUMO

BACKGROUND: The COVID-19 pandemic revealed a need for better collaboration among research, care, and management in Germany as well as globally. Initially, there was a high demand for broad data collection across Germany, but as the pandemic evolved, localized data became increasingly necessary. Customized dashboards and tools were rapidly developed to provide timely and accurate information. In Saxony, the DISPENSE project was created to predict short-term hospital bed capacity demands, and while it was successful, continuous adjustments and the initial monolithic system architecture of the application made it difficult to customize and scale. METHODS: To analyze the current state of the DISPENSE tool, we conducted an in-depth analysis of the data processing steps and identified data flows underlying users' metrics and dashboards. We also conducted a workshop to understand the different views and constraints of specific user groups, and brought together and clustered the information according to content-related service areas to determine functionality-related service groups. Based on this analysis, we developed a concept for the system architecture, modularized the main services by assigning specialized applications and integrated them into the existing system, allowing for self-service reporting and evaluation of the expert groups' needs. RESULTS: We analyzed the applications' dataflow and identified specific user groups. The functionalities of the monolithic application were divided into specific service groups for data processing, data storage, predictions, content visualization, and user management. After composition and implementation, we evaluated the new system architecture against the initial requirements by enabling self-service reporting to the users. DISCUSSION: By modularizing the monolithic application and creating a more flexible system, the challenges of rapidly changing requirements, growing need for information, and high administrative efforts were addressed. CONCLUSION: We demonstrated an improved adaptation towards the needs of various user groups, increased efficiency, and reduced burden on administrators, while also enabling self-service functionalities and specialization of single applications on individual service groups.


Assuntos
Armazenamento e Recuperação da Informação , Pandemias , Humanos , Coleta de Dados , Alemanha
17.
Front Med (Lausanne) ; 11: 1377209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903818

RESUMO

Introduction: Obtaining real-world data from routine clinical care is of growing interest for scientific research and personalized medicine. Despite the abundance of medical data across various facilities - including hospitals, outpatient clinics, and physician practices - the intersectoral exchange of information remains largely hindered due to differences in data structure, content, and adherence to data protection regulations. In response to this challenge, the Medical Informatics Initiative (MII) was launched in Germany, focusing initially on university hospitals to foster the exchange and utilization of real-world data through the development of standardized methods and tools, including the creation of a common core dataset. Our aim, as part of the Medical Informatics Research Hub in Saxony (MiHUBx), is to extend the MII concepts to non-university healthcare providers in a more seamless manner to enable the exchange of real-world data among intersectoral medical sites. Methods: We investigated what services are needed to facilitate the provision of harmonized real-world data for cross-site research. On this basis, we designed a Service Platform Prototype that hosts services for data harmonization, adhering to the globally recognized Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) international standard communication format and the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). Leveraging these standards, we implemented additional services facilitating data utilization, exchange and analysis. Throughout the development phase, we collaborated with an interdisciplinary team of experts from the fields of system administration, software engineering and technology acceptance to ensure that the solution is sustainable and reusable in the long term. Results: We have developed the pre-built packages "ResearchData-to-FHIR," "FHIR-to-OMOP," and "Addons," which provide the services for data harmonization and provision of project-related real-world data in both the FHIR MII Core dataset format (CDS) and the OMOP CDM format as well as utilization and a Service Platform Prototype to streamline data management and use. Conclusion: Our development shows a possible approach to extend the MII concepts to non-university healthcare providers to enable cross-site research on real-world data. Our Service Platform Prototype can thus pave the way for intersectoral data sharing, federated analysis, and provision of SMART-on-FHIR applications to support clinical decision making.

18.
NPJ Digit Med ; 7(1): 76, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509224

RESUMO

Clinical research relies on high-quality patient data, however, obtaining big data sets is costly and access to existing data is often hindered by privacy and regulatory concerns. Synthetic data generation holds the promise of effectively bypassing these boundaries allowing for simplified data accessibility and the prospect of synthetic control cohorts. We employed two different methodologies of generative artificial intelligence - CTAB-GAN+ and normalizing flows (NFlow) - to synthesize patient data derived from 1606 patients with acute myeloid leukemia, a heterogeneous hematological malignancy, that were treated within four multicenter clinical trials. Both generative models accurately captured distributions of demographic, laboratory, molecular and cytogenetic variables, as well as patient outcomes yielding high performance scores regarding fidelity and usability of both synthetic cohorts (n = 1606 each). Survival analysis demonstrated close resemblance of survival curves between original and synthetic cohorts. Inter-variable relationships were preserved in univariable outcome analysis enabling explorative analysis in our synthetic data. Additionally, training sample privacy is safeguarded mitigating possible patient re-identification, which we quantified using Hamming distances. We provide not only a proof-of-concept for synthetic data generation in multimodal clinical data for rare diseases, but also full public access to synthetic data sets to foster further research.

19.
Int J Cancer ; 133(6): 1507-12, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23463379

RESUMO

Helicobacter pylori, a class I carcinogen, induces a proinflammatory response by activating the transcription factor nuclear factor-kappa B (NF-κB) in gastric epithelial cells. This inflammatory condition could lead to chronic gastritis, which is epidemiologically and biologically linked to the development of gastric cancer. So far, there exists no clear knowledge on how H. pylori induces the NF-κB-mediated inflammatory response. In our study, we investigated the role of Ca(2+) /calmodulin-dependent kinase II (CAMKII), calmodulin, protein kinases C (PKCs) and the CARMA3-Bcl10-MALT1 (CBM) complex in conjunction with H. pylori-induced activation of NF-κB via the inhibitor of nuclear factor-kappa B kinase (IKK) complex. We use specific inhibitors and/or RNA interference to assess the contribution of these components. Our results show that CAMKII and calmodulin contribute to IKK complex activation and thus to the induction of NF-κB in response to H. pylori infection, but not in response to TNF-α. Thus, our findings are specific for H. pylori infected cells. Neither the PKCs α, δ, θ, nor the CBM complex itself is involved in the activation of NF-κB by H. pylori. The contribution of CAMKII and calmodulin, but not PKCs/CBM to the induction of an inflammatory response by H. pylori infection augment the understanding of the molecular mechanism involved and provide potential new disease markers for the diagnosis of gastric inflammatory diseases including gastric cancer.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Quinase I-kappa B/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteína 10 de Linfoma CCL de Células B , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Calmodulina/fisiologia , Caspases/fisiologia , Células Cultivadas , Infecções por Helicobacter/imunologia , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B/fisiologia , Proteínas de Neoplasias/fisiologia , Proteína Quinase C/fisiologia
20.
Placenta ; 143: 12-15, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793322

RESUMO

The placenta remains the key organ to pregnancy complications, such as preeclampsia, contrarily the pathophysiology underlying the placental dysfunctions remains elusive. Here, we present our Disease Map "NaviCenta", which is an online resource based on the interactions between tissues, cellular compartments, and molecules that mediate disease-related processes in the placenta. We built cellular and molecular interaction networks based upon manual curation and annotation of publicly available information in the scientific literature, pathways resources, and Omics data. NaviCenta (Navigate the plaCenta) serves as an open access, spatio-temporal, multi-scale knowledge base, and analytical tool for enhanced interpretation and hypothesis testing on various placental disease phenotypes.


Assuntos
Doenças Placentárias , Pré-Eclâmpsia , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta/metabolismo , Doenças Placentárias/metabolismo , Complicações na Gravidez/metabolismo , Pré-Eclâmpsia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA