RESUMO
Tokamak operational regimes with small edge localized modes (ELMs) could be a solution to the problem of large transient heat loads in fusion reactors. A ballooning mode near the last closed flux surface governed by the pressure gradient and the magnetic shear there has been proposed for small ELMs. In this Letter, we experimentally investigate several stabilizing effects near the last closed flux surface and present linear ideal simulations that indeed develop ballooninglike fluctuations there and connect them with nonlinear resistive simulations. The dimensionless parameters of the small ELM regime in the region of interest are very similar to those in a reactor, making this regime the ideal exhaust scenario for a future device.
RESUMO
In a wide variety of natural and laboratory magnetized plasmas, filaments appear as a result of interchange instability. These convective structures substantially enhance transport in the direction perpendicular to the magnetic field. According to filament models, their propagation may follow different regimes depending on the parallel closure of charge conservation. This is of paramount importance in magnetic fusion plasmas, as high collisionality in the scrape-off layer may trigger a regime transition leading to strongly enhanced perpendicular particle fluxes. This work reports for the first time on an experimental verification of this process, linking enhanced transport with a regime transition as predicted by models. Based on these results, a novel scaling for global perpendicular particle transport in reactor relevant tokamaks such as ASDEX-Upgrade and JET is found, leading to important implications for next generation fusion devices.
RESUMO
First experiments with nonaxisymmetric magnetic perturbations, toroidal mode number n=2, produced by newly installed in-vessel saddle coils in the ASDEX Upgrade tokamak show significant reduction of plasma energy loss and peak divertor power load associated with type-I edge localized modes (ELMs) in high-confinement mode plasmas. ELM mitigation is observed above an edge density threshold and is obtained both with magnetic perturbations that are resonant and not resonant with the edge safety factor profile. Compared with unperturbed type-I ELMy reference plasmas, plasmas with mitigated ELMs show similar confinement, similar plasma density, and lower tungsten impurity concentration.
RESUMO
Turbulence properties in the scrape-off layer (SOL) in the presence of ion cyclotron frequency heating (ICRH) are compared to instances where it is absent. The discharges are all in a high-confinement mode (H-mode) regime. During ICRH, the SOL plasma density increases whereas turbulence large-scale and convective structures are shown to be suppressed. The probability distribution function is thus recorded to be closer to a Gaussian, and a net decrease in the low-frequency density fluctuations is reflected in the power spectra. Consequently, the level of turbulent fluctuations decreases significantly. Turbulence suppression is also reported during edge localized modes (ELMs) where both the ELMs-induced transport and duration are strongly affected. The increase of neutrals by gas puffing did not alter this behavior. We deduce that ICRH can be used as to suppress convective transport and reduce the ELM's amplitude.
RESUMO
The thermal helium beam edge diagnostic has recently been upgraded at the ASDEX Upgrade (AUG) tokamak experiment. Line ratio spectroscopy on neutral helium is a valuable tool for simultaneous determination of the electron temperature and density of plasmas. The diagnostic now offers a temporal resolution of 900 kHz with a spatial resolution of up to 3 mm at 32 lines of sight (LOS) simultaneously. The LOS covers a radial region of 8.5 cm, starting at the limiter radius and reaching into the confined region beyond the separatrix. Two components are of particular importance for the aforementioned hardware improvements. The first is the optical head, which collects the light from the experiment. Equipped with an innovative clamping system for optical fiber ends, an arbitrary distribution pattern of LOS can be achieved to gain radial and poloidal profiles. The second major development is a new polychromator system that measures the intensity of the 587 nm, 667 nm, 706 nm, and 728 nm helium lines simultaneously for 32 channels with filter-photomultiplier tube arrays. Thus, the thermal helium beam diagnostic supplements the AUG edge diagnostics, offering fast and spatially highly resolved electron temperature and density profile measurements that cover the plasma edge and scrape-off layer region. Plasma fluctuations, edge localized modes, filaments, and other turbulent structures are resolved, allowing analysis of their frequency and localization or their propagation velocity.
RESUMO
In magnetically confined fusion plasmas controlled gas injection is crucial for plasma fuelling as well as for various diagnostic applications such as active spectroscopy. We present a new, versatile system for the injection of collimated thermal gas beams into a vacuum chamber. This system consists of a gas pressure chamber, sealed by a custom made piezo valve towards a small capillary for gas injection. The setup can directly be placed inside of the vacuum chamber of fusion devices as it is small and immune against high magnetic fields. This enables gas injection close to the plasma periphery with high duty cycles and fast switch on/off times â² 0.5 ms. In this work, we present the design details of this new injection system and a systematic characterization of the beam properties as well as the gas flowrates which can be accomplished. The thin and relatively short capillary yields a small divergence of the injected beam with a half opening angle of 20°. The gas box is designed for pre-fill pressures of 10 mbar up to 100 bars and makes a flowrate accessible from 1018 part/s up to 1023 part/s. It hence is a versatile system for both diagnostic as well as fuelling applications. The implementation of this system in ASDEX Upgrade will be described and its application for line ratio spectroscopy on helium will be demonstrated on a selected example.
RESUMO
Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.
RESUMO
We present detailed spectroscopic analysis of the primary K-shell emission lines from a uniaxially expanding laser-produced hydrogenic and heliumlike aluminum plasma. The spectroscopic measurements are found to be consistent with time-dependent hydrodynamic properties of the plasma, measured using Thomson scattering and shadowgraphy. The K-shell population kinetics code FLY with the measured hydrodynamic parameters is used to generate spectra that are compared to the experimental spectra. Excellent agreement is found between the measured and calculated spectra for a variety of experimental target widths employed to produce plasmas with different optical depths. The peak emission from the hydrogenic Lyman series is determined to be from a temporal and spatial region where the hydrodynamic parameters are essentially constant. This allows a single steady-state solution of FLY to be used to deduce the electron temperature and density, from the measured line ratios and linewidths, for comparison with the Thomson and shadowgraphy data. These measurements are found to agree well with time-dependent calculations, and provide further validation for the FLY calculations of the ionization and excitation balance for a K-shell aluminum plasma. We also discuss the possible application of this data as a benchmark for hydrodynamic simulations and ionization/excitation balance calculations.
RESUMO
This article proposes a new method to evaluate basic characteristics of the dynamics of a coherent plasma structure (blob). With this method, one can evaluate the propagation angle of a blob in a two-dimensional plasma cross section as well as the blob velocity, size, and amplitude from one-dimensional data. The method is applied to blob measurements from the Lithium beam emission spectroscopy system in ASDEX-Upgrade. Statistical features of the observed blob velocities, angles of propagation, blob sizes, and amplitudes are discussed. The validity of the method is examined by comparing two values of the propagation angle that are evaluated in an independent manner.
RESUMO
One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.
Assuntos
Ensaios de Triagem em Larga Escala/métodos , Microalgas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Biomassa , Carboidratos/análise , Modelos Lineares , Lipídeos/análise , Microalgas/crescimento & desenvolvimento , Análise Multivariada , Proteínas/análiseRESUMO
The lithium beam diagnostic at ASDEX Upgrade routinely delivers electron density profiles in the plasma edge by lithium beam impact excitation spectroscopy. An accurate background subtraction requires a periodically chopped lithium beam. A new, improved chopping system was developed and installed. It involves a voltage modulation for the extractor electrode and the beam deflection plates. The modulation of the extractor electrode reduces the unused portion of lithium ions and improves the stability of the beam with respect to its position. Furthermore, the data indicate an extended emitter lifetime. The extractor chopping was also found to be insensitive to sparks. The deflection chopping experiments demonstrated beam chopping in the kilohertz range. The significantly higher modulation frequency of the deflection chopping improves background subtraction of fast transient events. It allows a more accurate density measurements in the scrape off layer during impurity injections and edge localized modes.
RESUMO
The toroidal rotation of H-mode plasmas in ASDEX Upgrade is studied in the outermost 5 cm of the confined plasma. The projection of the rotation velocity along the line of sight (approximately toroidal) is measured using charge exchange recombination spectroscopy, with a radial resolution of up to 3 mm and a temporal resolution of 1.9 ms. At about 1 cm inside the separatrix the rotation exhibits a local minimum. From there, the rotation in codirection increases towards the plasma center and towards the separatrix. The latter increase is the focus of this work. It is situated in the region of the edge transport barrier and amounts to 10-20 km/s. It is observed for D+, He2+, B5+, and C6+. The described rotation feature at the edge is not visible during an ELM crash and is probably connected to the occurrence of steep gradients in this plasma region.
RESUMO
Experimental x-ray spectra of the H-like 2p --> 1s (Lyman-alpha) doublet have been obtained using time-integrated high-resolution spectroscopy of a constrained-flow, laser-generated aluminum plasma. These spectra show monotonic alteration of the relative intensities of the doublet components with distance from the target surface. Excellent agreement between experiment and theory is found only if the modeling includes both ion collisional rates between the fine-structure components of the level and, more importantly, the radiative pumping of one Lyman-alpha component by the other component along the direction of the major velocity gradient (i.e., perpendicular to the direction of spectra observation). Understanding radiation transfer in plasmas with high velocity gradients is important in modeling many astrophysical objects, and this experiment acts as a benchmark for such complex calculations.
RESUMO
When titanium dioxide (TiO(2)) is irradiated with near-UV light, this semiconductor exhibits strong bactericidal activity. In this paper, we present the first evidence that the lipid peroxidation reaction is the underlying mechanism of death of Escherichia coli K-12 cells that are irradiated in the presence of the TiO(2) photocatalyst. Using production of malondialdehyde (MDA) as an index to assess cell membrane damage by lipid peroxidation, we observed that there was an exponential increase in the production of MDA, whose concentration reached 1.1 to 2.4 nmol. mg (dry weight) of cells(-1) after 30 min of illumination, and that the kinetics of this process paralleled cell death. Under these conditions, concomitant losses of 77 to 93% of the cell respiratory activity were also detected, as measured by both oxygen uptake and reduction of 2,3,5-triphenyltetrazolium chloride from succinate as the electron donor. The occurrence of lipid peroxidation and the simultaneous losses of both membrane-dependent respiratory activity and cell viability depended strictly on the presence of both light and TiO(2). We concluded that TiO(2) photocatalysis promoted peroxidation of the polyunsaturated phospholipid component of the lipid membrane initially and induced major disorder in the E. coli cell membrane. Subsequently, essential functions that rely on intact cell membrane architecture, such as respiratory activity, were lost, and cell death was inevitable.