Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Circ Res ; 133(9): 758-771, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37737016

RESUMO

BACKGROUND: Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS: Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS: In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS: Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.


Assuntos
Fibrilação Atrial , Proteína Fosfatase 1 , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
2.
Microcirculation ; 30(7): e12826, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605603

RESUMO

OBJECTIVE: Three-dimensional (3D) microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and their association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). METHODS: We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image-processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. RESULTS: Chamber-specific pathological alterations of LyVs were identified, and significant changes were seen in the right atrium (RA). TG hearts had a higher volume percent of ER-TR7+ fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7+ volume percent and both LyV segment density and median diameter. CONCLUSIONS: This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.


Assuntos
Coração , Vasos Linfáticos , Camundongos , Animais , Camundongos Transgênicos , Vasos Coronários , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional
3.
Circ Res ; 128(4): 455-470, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33334123

RESUMO

RATIONALE: We recently discovered pivotal contributions of stress kinase JNK2 (c-Jun N-terminal kinase isoform 2) in increased risk of atrial fibrillation through enhanced diastolic sarcoplasmic reticulum (SR) calcium (Ca2+) leak via RyR2 (ryanodine receptor isoform 2). However, the role of JNK2 in the function of the SERCA2 (SR Ca2+-ATPase), essential in maintaining SR Ca2+ content cycling during each heartbeat, is completely unknown. OBJECTIVE: To test the hypothesis that JNK2 increases SERCA2 activity SR Ca2+ content and exacerbates an arrhythmic SR Ca2+ content leak-load relationship. METHODS AND RESULTS: We used confocal Ca2+ imaging in myocytes and HEK-RyR2 (ryanodine receptor isoform 2-expressing human embryonic kidney 293 cells) cells, biochemistry, dual Ca2+/voltage optical mapping in intact hearts from alcohol-exposed or aged mice (where JNK2 is activated). We found that JNK2, but not JNK1 (c-Jun N-terminal kinase isoform 1), increased SERCA2 uptake and consequently elevated SR Ca2+ content load. JNK2 also associates with and phosphorylates SERCA2 proteins. JNK2 causally enhances SERCA2-ATPase activity via increased maximal rate, without altering Ca2+ affinity. Unlike the CaMKII (Ca2+/calmodulin-dependent kinase II)-dependent JNK2 action in SR Ca2+ leak, JNK2-driven SERCA2 function was CaMKII independent (not prevented by CaMKII inhibition). With CaMKII blocked, the JNK2-driven SR Ca2+ loading alone did not significantly raise leak. However, with JNK2-CaMKII-driven SR Ca2+ leak present, the JNK2-enhanced SR Ca2+ uptake limited leak-induced reduction in SR Ca2+, normalizing Ca2+ transient amplitude, but at a higher arrhythmogenic SR Ca2+ leak. JNK2-specific inhibition completely normalized SR Ca2+ handling, attenuated arrhythmic Ca2+ activities, and alleviated atrial fibrillation susceptibility in aged and alcohol-exposed myocytes and intact hearts. CONCLUSIONS: We have identified a novel JNK2-induced activation of SERCA2. The dual action of JNK2 in CaMKII-dependent arrhythmic SR Ca2+ leak and a CaMKII-independent uptake exacerbates atrial arrhythmogenicity, while helping to maintain normal levels of Ca2+ transients and heart function. JNK2 modulation may be a novel therapeutic target for atrial fibrillation prevention and treatment.


Assuntos
Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Potenciais de Ação , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Mol Pharmacol ; 101(5): 286-299, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236770

RESUMO

We tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hypercontractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM), which is often linked to mutations in sarcomeric proteins. To address the effect of these agents in developing sarcomeres, we isolated heart fiber bundles, extracted membranes with Triton X-100, and measured tension developed over a range of Ca2+ concentrations with and without OM or Mava treatment. We made measurements in fiber bundles from hearts of adult nontransgenic (NTG) controls expressing cardiac troponin I (cTnI), and from hearts of transgenic (TG-ssTnI) mice expressing the fetal/neonatal form, slow skeletal troponin I (ssTnI). We also compared fibers from 7- and 14-day-old NTG mice expressing ssTnI and cTnI. These studies were repeated with 7- and 14-day-old transgenic mice (TG-cTnT-R92Q) expressing a mutant form of cardiac troponin T (cTnT) linked to HCM. OM increased Ca2+-sensitivity and decreased cooperative activation in both ssTnI- and cTnI-regulated myofilaments with a similar effect: reducing submaximal tension in immature and mature myofilaments. Although Mava decreased tension similarly in cTnI- and ssTnI-regulated myofilaments controlled either by cTnT or cTnT-R92Q, its effect involved a depressed Ca2+-sensitivity in the mature cTnT-R92 myofilaments. Our data demonstrate an influence of myosin and thin-filament associated proteins on the actions of myosin-directed agents such as OM and Mava. SIGNIFICANCE STATEMENT: The effects of myosin-targeted activators and inhibitors on Ca2+-activated tension in developing cardiac sarcomeres presented here provide novel, ex vivo evidence as to their actions in early-stage cardiac disorders. These studies advance understanding of the molecular mechanisms of these agents, which are important in preclinical studies employing sarcomere Ca2+-response as a screening approach. The data also inform the use of commonly immature cardiac myocytes generated from human-inducible pluripotent stem cells in screening for sarcomere activators and inhibitors.


Assuntos
Miofibrilas , Sarcômeros , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos , Miofibrilas/metabolismo , Miosinas/metabolismo , Miosinas/farmacologia , Troponina I/genética , Troponina I/metabolismo , Troponina I/farmacologia
5.
Mol Cell Biochem ; 477(6): 1803-1815, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316461

RESUMO

The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.


Assuntos
Espectrometria de Massas em Tandem , Troponina I , Aminoácidos , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/metabolismo , Peptídeos , Fosforilação , Transdução de Sinais , Troponina I/química , Troponina I/genética , Troponina I/metabolismo
6.
J Cardiovasc Pharmacol ; 77(3): 317-322, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298734

RESUMO

ABSTRACT: A dominant mechanism of sudden cardiac death in the young is the progression of maladaptive responses to genes encoding proteins linked to hypertrophic cardiomyopathy. Most are mutant sarcomere proteins that trigger the progression by imposing a biophysical defect on the dynamics and levels of myofilament tension generation. We discuss approaches for personalized treatments that are indicated by recent advanced understanding of the progression.


Assuntos
Cardiomiopatia Hipertrófica/terapia , Morte Súbita Cardíaca/prevenção & controle , Medicina de Precisão , COVID-19/complicações , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Tomada de Decisão Clínica , Morte Súbita Cardíaca/etiologia , Predisposição Genética para Doença , Humanos , Mutação , Fenótipo , Prognóstico , Medição de Risco , Fatores de Risco , Transcriptoma
7.
J Biol Chem ; 294(8): 2913-2923, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30567734

RESUMO

Phosphorylation of cardiac sarcomeric proteins plays a major role in the regulation of the physiological performance of the heart. Phosphorylation of thin filament proteins, such as troponin I and T, dramatically affects calcium sensitivity of the myofiber and systolic and diastolic functions. Phosphorylation of the regulatory protein tropomyosin (Tpm) results in altered biochemical properties of contraction; however, little is known about the physiological effect of Tpm phosphorylation on cardiac function. To address the in vivo significance of Tpm phosphorylation, here we generated transgenic mouse lines having a phosphomimetic substitution in the phosphorylation site of α-Tpm (S283D). High expression of Tpm S283D variant in one transgenic mouse line resulted in an increased heart:body weight ratio, coupled with a severe dilated cardiomyopathic phenotype resulting in death within 1 month of birth. Moderate Tpm S283D mice expression in other lines caused mild myocyte hypertrophy and fibrosis, did not affect lifespan, and was coupled with decreased expression of extracellular signal-regulated kinase 1/2 kinase signaling. Physiological analysis revealed that the transgenic mice exhibit impaired diastolic function, without changes in systolic performance. Surprisingly, we observed no alterations in calcium sensitivity of the myofibers, cooperativity, or calcium-ATPase activity in the myofibers. Our experiments also disclosed that casein kinase 2 plays an integral role in Tpm phosphorylation. In summary, increased expression of pseudo-phosphorylated Tpm impairs diastolic function in the intact heart, without altering calcium sensitivity or cooperativity of myofibers. Our findings provide the first extensive in vivo assessment of Tpm phosphorylation in the heart and its functional role in cardiac performance.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Tropomiosina/fisiologia , Animais , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Células Cultivadas , Camundongos , Camundongos Transgênicos , Mutação , Miofibrilas/metabolismo , Miofibrilas/patologia , Fosforilação
8.
Pflugers Arch ; 471(5): 769-780, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370501

RESUMO

Alterations in the coronary vascular system are likely associated with a mismatch between energy demand and energy supply and critical in triggering the cascade of events that leads to symptomatic hypertrophic cardiomyopathy. Targeting the early events, particularly vascular remodeling, may be a key approach to developing effective treatments. Improvement in our understanding of hypertrophic cardiomyopathy began with the results of early biophysical studies, proceeded to genetic analyses pinpointing the mutational origin, and now pertains to imaging of the metabolic and flow-related consequences of such mutations. Microvascular dysfunction has been an ongoing hot topic in the imaging of genetic cardiomyopathies marked by its histologically significant remodeling and has proven to be a powerful asset in determining prognosis for these patients as well as enlightening scientists on a potential pathophysiological cascade that may begin early during the developmental process. Here, we discuss questions that continue to remain on the mechanistic processes leading to microvascular dysfunction, its correlation to the morphological changes in the vessels, and its contribution to disease progression.


Assuntos
Cardiomiopatia Hipertrófica/etiologia , Vasos Coronários/fisiopatologia , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Circulação Coronária , Humanos
9.
Proc Natl Acad Sci U S A ; 113(50): 14426-14431, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911784

RESUMO

The Frank-Starling law of the heart is a physiological phenomenon that describes an intrinsic property of heart muscle in which increased cardiac filling leads to enhanced cardiac contractility. Identified more than a century ago, the Frank-Starling relationship is currently known to involve length-dependent enhancement of cardiac myofilament Ca2+ sensitivity. However, the upstream molecular events that link cellular stretch to the length-dependent myofilament Ca2+ sensitivity are poorly understood. Because the angiotensin II type 1 receptor (AT1R) and the multifunctional transducer protein ß-arrestin have been shown to mediate mechanosensitive cellular signaling, we tested the hypothesis that these two proteins are involved in the Frank-Starling mechanism of the heart. Using invasive hemodynamics, we found that mice lacking ß-arrestin 1, ß-arrestin 2, or AT1R were unable to generate a Frank-Starling force in response to changes in cardiac volume. Although wild-type mice pretreated with the conventional AT1R blocker losartan were unable to enhance cardiac contractility with volume loading, treatment with a ß-arrestin-biased AT1R ligand to selectively activate ß-arrestin signaling preserved the Frank-Starling relationship. Importantly, in skinned muscle fiber preparations, we found markedly impaired length-dependent myofilament Ca2+ sensitivity in ß-arrestin 1, ß-arrestin 2, and AT1R knockout mice. Our data reveal ß-arrestin 1, ß-arrestin 2, and AT1R as key regulatory molecules in the Frank-Starling mechanism, which potentially can be targeted therapeutically with ß-arrestin-biased AT1R ligands.


Assuntos
Modelos Cardiovasculares , Contração Miocárdica/fisiologia , beta-Arrestina 1/fisiologia , beta-Arrestina 2/fisiologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Sinalização do Cálcio/fisiologia , Técnicas In Vitro , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/deficiência , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , beta-Arrestina 1/deficiência , beta-Arrestina 1/genética , beta-Arrestina 2/deficiência , beta-Arrestina 2/genética
10.
Circulation ; 135(11): 1056-1070, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28104714

RESUMO

BACKGROUND: Biased agonism of the angiotensin II receptor is known to promote cardiac contractility. Our laboratory indicated that these effects may be attributable to changes at the level of the myofilaments. However, these signaling mechanisms remain unknown. Because a common finding in dilated cardiomyopathy is a reduction in the myofilament-Ca2+ response, we hypothesized that ß-arrestin signaling would increase myofilament-Ca2+ responsiveness in a model of familial dilated cardiomyopathy and improve cardiac function and morphology. METHODS: We treated a dilated cardiomyopathy-linked mouse model expressing a mutant tropomyosin (Tm-E54K) for 3 months with either TRV120067, a ß-arrestin 2-biased ligand of the angiotensin II receptor, or losartan, an angiotensin II receptor blocker. At the end of the treatment protocol, we assessed cardiac function using echocardiography, the myofilament-Ca2+ response of detergent-extracted fiber bundles, and used proteomic approaches to understand changes in posttranslational modifications of proteins that may explain functional changes. We also assessed signaling pathways altered in vivo and by using isolated myocytes. RESULTS: TRV120067- treated Tm-E54K mice showed improved cardiac structure and function, whereas losartan-treated mice had no improvement. Myofilaments of TRV120067-treated Tm-E54K mice had significantly improved myofilament-Ca2+ responsiveness, which was depressed in untreated Tm-E54K mice. We attributed these changes to increased MLC2v and MYPT1/2 phosphorylation seen only in TRV120067-treated mice. We found that the functional changes were attributable to an activation of ERK1/2-RSK3 signaling, mediated through ß-arrestin, which may have a novel role in increasing MLC2v phosphorylation through a previously unrecognized interaction of ß-arrestin localized to the sarcomere. CONCLUSIONS: Long-term ß-arrestin 2-biased agonism of the angiotensin II receptor may be a viable approach to the treatment of dilated cardiomyopathy by not only preventing maladaptive signaling, but also improving cardiac function by altering the myofilament-Ca2+ response via ß-arrestin signaling pathways.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , beta-Arrestinas/agonistas , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Feminino , Coração/diagnóstico por imagem , Coração/fisiopatologia , Losartan/farmacologia , Losartan/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tropomiosina/genética , Tropomiosina/metabolismo , beta-Arrestinas/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 309(10): H1720-30, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432840

RESUMO

S-glutathionylation of cardiac myosin-binding protein C (cMyBP-C) induces Ca(2+) sensitization and a slowing of cross-bridge kinetics as a result of increased oxidative signaling. Although there is evidence for a role of oxidative stress in disorders associated with hypertrophic cardiomyopathy (HCM), this mechanism is not well understood. We investigated whether oxidative myofilament modifications may be in part responsible for diastolic dysfunction in HCM. We administered N-acetylcysteine (NAC) for 30 days to 1-mo-old wild-type mice and to transgenic mice expressing a mutant tropomyosin (Tm-E180G) and nontransgenic littermates. Tm-E180G hearts demonstrate a phenotype similar to human HCM. After NAC administration, the morphology and diastolic function of Tm-E180G mice was not significantly different from controls, indicating that NAC had reversed baseline diastolic dysfunction and hypertrophy in our model. NAC administration also increased sarco(endo)plasmic reticulum Ca(2+) ATPase protein expression, reduced extracellular signal-related kinase 1/2 phosphorylation, and normalized phosphorylation of phospholamban, as assessed by Western blot. Detergent-extracted fiber bundles from NAC-administered Tm-E180G mice showed nearly nontransgenic (NTG) myofilament Ca(2+) sensitivity. Additionally, we found that NAC increased tension cost and rate of cross-bridge reattachment. Tm-E180G myofilaments were found to have a significant increase in S-glutathionylation of cMyBP-C, which was returned to NTG levels upon NAC administration. Taken together, our results indicate that oxidative myofilament modifications are an important mediator in diastolic function, and by relieving this modification we were able to reverse established diastolic dysfunction and hypertrophy in HCM.


Assuntos
Acetilcisteína/farmacologia , Cardiomiopatia Hipertrófica Familiar/metabolismo , Diástole/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miofibrilas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tropomiosina/genética
12.
J Cardiovasc Pharmacol ; 66(4): 347-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26065842

RESUMO

Apart from transplant, there are no satisfactory therapies for the severe depression in contractility in familial dilated cardiomyopathy (DCM). Current heart failure treatments that act by increasing contractility involve signaling cascades that alter calcium homeostasis and induce arrhythmias. Omecamtiv mecarbil is a promising new inotropic agent developed for heart failure that may circumvent such limitations. Omecamtiv is a direct cardiac myosin activator that promotes and prolongs the strong myosin-actin binding conformation to increase the duration of systolic elastance. We tested the effect of omecamtiv on Ca(2+) sensitivity of myofilaments of a DCM mouse model containing a tropomyosin E54K mutation. We compared tension and ATPase activity of detergent-extracted myofilaments with and without treatment with 316 nM omecamtiv at varying pCa values. When transgenic myofilaments were treated with omecamtiv, the pCa50 for activation of tension increased from 5.70 ± 0.02 to 5.82 ± 0.02 and ATPase activity increased from 5.73 ± 0.06 to 6.07 ± 0.04. This significant leftward shift restored Ca(2+) sensitivity to levels no longer significantly different from controls. Proteomic studies lacked changes in sarcomeric protein phosphorylation. Our data demonstrate that omecamtiv can potentially augment cardiac contractility in DCM by increasing Ca(2+) sensitivity. The use of direct myosin activators addresses functional defects without incurring the adverse side effects of Ca(2+)-dependent treatments.


Assuntos
Cálcio/metabolismo , Miosinas Cardíacas/metabolismo , Cardiomiopatia Dilatada/tratamento farmacológico , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Tropomiosina/genética , Ureia/análogos & derivados , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Mutação , Ureia/administração & dosagem , Ureia/farmacologia , Ureia/uso terapêutico
13.
J Biol Chem ; 288(40): 28925-35, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23960072

RESUMO

Studies indicate that tropomyosin (Tm) phosphorylation status varies in different mouse models of cardiac disease. Investigation of basal and acute cardiac function utilizing a mouse model expressing an α-Tm protein that cannot be phosphorylated (S283A) shows a compensated hypertrophic phenotype with significant increases in SERCA2a expression and phosphorylation of phospholamban Ser-16 (Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489). With these results, we hypothesized that decreasing α-Tm phosphorylation may be beneficial in the context of a chronic, intrinsic stressor. To test this hypothesis, we utilized the familial hypertrophic cardiomyopathy (FHC) α-Tm E180G model (Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828). These FHC hearts are characterized by increased heart:body weight ratios, fibrosis, increased myofilament Ca(2+) sensitivity, and contractile defects. The FHC mice die by 6-8 months of age. We generated mice expressing both the E180G and S283A mutations and found that the hypertrophic phenotype was rescued in the α-Tm E180G/S283A double mutant transgenic animals; these mice exhibited no signs of cardiac hypertrophy and displayed improved cardiac function. These double mutant transgenic hearts showed increased phosphorylation of phospholamban Ser-16 and Thr-17 compared with the α-Tm E180G mice. This is the first study to demonstrate that decreasing phosphorylation of tropomyosin can rescue a hypertrophic cardiomyopathic phenotype.


Assuntos
Cardiomiopatia Hipertrófica Familiar/metabolismo , Tropomiosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomiopatia Hipertrófica Familiar/diagnóstico por imagem , Cardiomiopatia Hipertrófica Familiar/patologia , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Regulação da Expressão Gênica , Testes de Função Cardíaca , Immunoblotting , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibrilas/metabolismo , Fosforilação , Ultrassonografia
14.
J Biol Chem ; 288(23): 16235-16246, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23609439

RESUMO

α-Tropomyosin (α-TM) has a conserved, charged Asp-137 residue located in the hydrophobic core of its coiled-coil structure, which is unusual in that the residue is found at a position typically occupied by a hydrophobic residue. Asp-137 is thought to destabilize the coiled-coil and so impart structural flexibility to the molecule, which is believed to be crucial for its function in the heart. A previous in vitro study indicated that the conversion of Asp-137 to a more typical canonical Leu alters flexibility of TM and affects its in vitro regulatory functions. However, the physiological importance of the residue Asp-137 and altered TM flexibility is unknown. In this study, we further analyzed structural properties of the α-TM-D137L variant and addressed the physiological importance of TM flexibility in cardiac function in studies with a novel transgenic mouse model expressing α-TM-D137L in the heart. Our NMR spectroscopy data indicated that the presence of D137L introduced long range rearrangements in TM structure. Differential scanning calorimetry measurements demonstrated that α-TM-D137L has higher thermal stability compared with α-TM, which correlated with decreased flexibility. Hearts of transgenic mice expressing α-TM-D137L showed systolic and diastolic dysfunction with decreased myofilament Ca(2+) sensitivity and cardiomyocyte contractility without changes in intracellular Ca(2+) transients or post-translational modifications of major myofilament proteins. We conclude that conversion of the highly conserved Asp-137 to Leu results in loss of flexibility of TM that is important for its regulatory functions in mouse hearts. Thus, our results provide insight into the link between flexibility of TM and its function in ejecting hearts.


Assuntos
Mutação de Sentido Incorreto , Contração Miocárdica , Miocárdio/metabolismo , Volume Sistólico , Tropomiosina/biossíntese , Substituição de Aminoácidos , Animais , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Ratos , Relação Estrutura-Atividade , Tropomiosina/química , Tropomiosina/genética
15.
Basic Res Cardiol ; 109(6): 445, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25280528

RESUMO

Although ceramide accumulation in the heart is considered a major factor in promoting apoptosis and cardiac disorders, including heart failure, lipotoxicity and ischemia-reperfusion injury, little is known about ceramide's role in mediating changes in contractility. In the present study, we measured the functional consequences of acute exposure of isolated field-stimulated adult rat cardiomyocytes to C6-ceramide. Exogenous ceramide treatment depressed the peak amplitude and the maximal velocity of shortening without altering intracellular calcium levels or kinetics. The inactive ceramide analog C6-dihydroceramide had no effect on myocyte shortening or [Ca(2+)]i transients. Experiments testing a potential role for C6-ceramide-mediated effects on activation of protein kinase C (PKC) demonstrated evidence for signaling through the calcium-independent isoform, PKCε. We employed 2-dimensional electrophoresis and anti-phospho-peptide antibodies to test whether treatment of the cardiomyocytes with C6-ceramide altered myocyte shortening via PKC-dependent phosphorylation of myofilament proteins. Compared to controls, myocytes treated with ceramide exhibited increased phosphorylation of myosin binding protein-C (cMyBP-C), specifically at Ser273 and Ser302, and troponin I (cTnI) at sites apart from Ser23/24, which could be attenuated with PKC inhibition. We conclude that the altered myofilament response to calcium resulting from multiple sites of PKC-dependent phosphorylation contributes to contractile dysfunction that is associated with cardiac diseases in which elevations in ceramides are present.


Assuntos
Ceramidas/fisiologia , Miócitos Cardíacos/fisiologia , Miofibrilas/metabolismo , Proteína Quinase C/fisiologia , Animais , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
16.
Biomedicines ; 12(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38790961

RESUMO

Novel therapies for the treatment of familial dilated cardiomyopathy (DCM) are lacking. Shaping research directions to clinical needs is critical. Triggers for the progression of the disorder commonly occur due to specific gene variants that affect the production of sarcomeric/cytoskeletal proteins. Generally, these variants cause a decrease in tension by the myofilaments, resulting in signaling abnormalities within the micro-environment, which over time result in structural and functional maladaptations, leading to heart failure (HF). Current concepts support the hypothesis that the mutant sarcomere proteins induce a causal depression in the tension-time integral (TTI) of linear preparations of cardiac muscle. However, molecular mechanisms underlying tension generation particularly concerning mutant proteins and their impact on sarcomere molecular signaling are currently controversial. Thus, there is a need for clarification as to how mutant proteins affect sarcomere molecular signaling in the etiology and progression of DCM. A main topic in this controversy is the control of the number of tension-generating myosin heads reacting with the thin filament. One line of investigation proposes that this number is determined by changes in the ratio of myosin heads in a sequestered super-relaxed state (SRX) or in a disordered relaxed state (DRX) poised for force generation upon the Ca2+ activation of the thin filament. Contrasting evidence from nanometer-micrometer-scale X-ray diffraction in intact trabeculae indicates that the SRX/DRX states may have a lesser role. Instead, the proposal is that myosin heads are in a basal OFF state in relaxation then transfer to an ON state through a mechano-sensing mechanism induced during early thin filament activation and increasing thick filament strain. Recent evidence about the modulation of these mechanisms by protein phosphorylation has also introduced a need for reconsidering the control of tension. We discuss these mechanisms that lead to different ideas related to how tension is disturbed by levels of mutant sarcomere proteins linked to the expression of gene variants in the complex landscape of DCM. Resolving the various mechanisms and incorporating them into a unified concept is crucial for gaining a comprehensive understanding of DCM. This deeper understanding is not only important for diagnosis and treatment strategies with small molecules, but also for understanding the reciprocal signaling processes that occur between cardiac myocytes and their micro-environment. By unraveling these complexities, we can pave the way for improved therapeutic interventions for managing DCM.

17.
Physiol Genomics ; 45(17): 764-73, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23800848

RESUMO

Familial hypertrophic cardiomyopathy (FHC) is a disease characterized by ventricular hypertrophy, fibrosis, and aberrant systolic and/or diastolic function. Our laboratories have previously developed two mouse models that affect cardiac performance. One mouse model encodes an FHC-associated mutation in α-tropomyosin: Glu → Gly at amino acid 180, designated as Tm180. These mice display a phenotype that is characteristic of FHC, including severe cardiac hypertrophy with fibrosis and impaired physiological performance. The other model was a gene knockout of phospholamban (PLN KO), a regulator of calcium uptake in the sarcoplasmic reticulum of cardiomyocytes; these hearts exhibit hypercontractility with no pathological abnormalities. Previous work in our laboratories shows that when mice were genetically crossed between the PLN KO and Tm180, the progeny (PLN KO/Tm180) display a rescued hypertrophic phenotype with improved morphology and cardiac function. To understand the changes in gene expression that occur in these models undergoing cardiac remodeling (Tm180, PLN KO, PLN KO/Tm180, and nontransgenic control mice), we conducted microarray analyses of left ventricular tissue at 4 and 12 mo of age. Expression profiling reveals that 1,187 genes changed expression in direct response to the three genetic models. With these 1,187 genes, 11 clusters emerged showing normalization of transcript expression in the PLN KO/Tm180 hearts. In addition, 62 transcripts are highly involved in suppression of the hypertrophic phenotype. Confirmation of the microarray analysis was conducted by quantitative RT-PCR. These results provide insight into genes that alter expression during cardiac remodeling and are active during modulation of the cardiomyopathic phenotype.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Expressão Gênica , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Ventrículos do Coração/fisiopatologia , Camundongos Knockout , Camundongos Transgênicos , Análise em Microsséries
18.
J Biol Chem ; 287(53): 44478-89, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23148217

RESUMO

Phosphorylation of tropomyosin (Tm) has been shown to vary in mouse models of cardiac hypertrophy. Little is known about the in vivo role of Tm phosphorylation. This study examines the consequences of Tm dephosphorylation in the murine heart. Transgenic (TG) mice were generated with cardiac specific expression of α-Tm with serine 283, the phosphorylation site of Tm, mutated to alanine. Echocardiographic analysis and cardiomyocyte cross-sectional area measurements show that α-Tm S283A TG mice exhibit a hypertrophic phenotype at basal levels. Interestingly, there are no alterations in cardiac function, myofilament calcium (Ca(2+)) sensitivity, cooperativity, or response to ß-adrenergic stimulus. Studies of Ca(2+) handling proteins show significant increases in sarcoplasmic reticulum ATPase (SERCA2a) protein expression and an increase in phospholamban phosphorylation at serine 16, similar to hearts under exercise training. Compared with controls, the decrease in phosphorylation of α-Tm results in greater functional defects in TG animals stressed by transaortic constriction to induce pressure overload-hypertrophy. This is the first study to investigate the in vivo role of Tm dephosphorylation under both normal and cardiac stress conditions, documenting a role for Tm dephosphorylation in the maintenance of a compensated or physiological phenotype. Collectively, these results suggest that modification of the Tm phosphorylation status in the heart, depending upon the cardiac state/condition, may modulate the development of cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Tropomiosina/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Feminino , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tropomiosina/genética
19.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778334

RESUMO

Objective: 3D microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). Methods: We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic (NTG) and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. Results: Chamber-specific pathological alterations of LyVs were identified, but most significantly in the right atrium (RA). TG hearts had a higher volume fraction of ER-TR7 + fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7 + volume fraction and both LyV segment density and median diameter. Conclusions: This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.

20.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220176, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122209

RESUMO

In this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N+/-), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S et al. 2021 Front. Cell Dev. Biol. 9, 787581. (doi:10.3389/fcell.2021.787581)). Our search of the literature revealed the novelty of this finding and stimulated us to discuss potential connections between the Notch signalling pathway and familial cardiomyopathies. Our considerations focused on the potential role of these interactions in arrhythmias, microvascular ischaemia, and fibrosis. This finding underscored a need to consider the role of Notch signalling in familial cardiomyopathies which are trigged by sarcomere mutations engaging mechano-signalling pathways for which there is evidence of a role for Notch signalling with crosstalk with Hippo signalling. Our discussion included a role for both cardiac myocytes and non-cardiac myocytes in progression of HCM and DCM. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Hipertrófica/genética , Troponina T/genética , Troponina T/metabolismo , Hipertrofia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA