Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Anal Chem ; 96(36): 14393-14404, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39186690

RESUMO

BACKGROUND: Bile's potential to reflect the health of the biliary system has led to increased attention, with proteomic analysis offering deeper understanding of biliary diseases and potential biomarkers. With the emergence of normothermic machine perfusion (NMP), bile can be easily collected and analyzed. However, the composition of bile can make the application of proteomics challenging. This study systematically evaluated various trypsin digestion methods to optimize proteomics of bile from human NMP livers. METHODS: Bile was collected from 12 human donor livers that were accepted for transplantation after the NMP viability assessment. We performed tryptic digestion using six different methods: in-gel, in-solution, S-Trap, SMART, EasyPep, and filter-aided sample purification, with or without additional precipitation before digestion. Proteins were analyzed using untargeted proteomics. Methods were assessed for total protein IDs, variation, and protein characteristics to determine the most optimal method. RESULTS: Methods involving precipitation surpassed crude methods in protein identifications (4500 vs 3815) except for in-gel digestion. Filtered data (40%) resulted in 3192 versus 2469 for precipitated and crude methods, respectively. We found minimal differences in mass, cellular components, or hydrophobicity of proteins between methods. Intermethod variability was notably diverse, with in-gel, in-solution, and EasyPep outperforming others. Age-related biological comparisons revealed upregulation of metabolic-related processes in younger donors and immune response and cell cycle-related processes in older donors. CONCLUSIONS: Variability between methods emphasizes the importance of cross-validation across multiple analytical approaches to ensure robust analysis. We recommend the in-gel crude method for its simplicity and efficiency, avoiding additional precipitation steps. Sample processing speed, cost, cleanliness, and reproducibility should be considered when a digestion method is selected for bile proteomics.


Assuntos
Bile , Biomarcadores , Proteômica , Humanos , Proteômica/métodos , Bile/química , Bile/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Tripsina/metabolismo , Tripsina/química , Pessoa de Meia-Idade , Masculino
2.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
3.
Hepatology ; 78(5): 1418-1432, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053190

RESUMO

BACKGROUND AND AIMS: The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS: To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS: We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.


Assuntos
Aterosclerose , Lipoproteínas VLDL , Hepatopatia Gordurosa não Alcoólica , Proteoglicanos Pequenos Ricos em Leucina , Animais , Feminino , Humanos , Masculino , Camundongos , Apolipoproteínas B/sangue , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Leucina , Lipoproteínas VLDL/biossíntese , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Triglicerídeos/sangue
4.
Circ Res ; 130(1): 80-95, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34809444

RESUMO

BACKGROUND: The LDLR (low-density lipoprotein receptor) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease. METHODS: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of data sets on gene expression and variants in human populations. RESULTS: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in nontransfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in nonalcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and 3 rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared with overexpression of wild-type RBM25, overexpression of the 3 rare RBM25 mutants in Huh-7 cells led to lower LDL uptake. CONCLUSIONS: We identified a novel mechanism of posttranscriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.


Assuntos
Proteínas Nucleares/metabolismo , Splicing de RNA , Receptores de LDL/genética , Colesterol/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Fígado/metabolismo , Mutação , Proteínas Nucleares/genética , Receptores de LDL/metabolismo , Spliceossomos/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 43(1): e29-e45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353989

RESUMO

BACKGROUND: The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear. We here investigated the contribution of retriever to hepatocytic lipoprotein receptor recycling and plasma lipids regulation. METHODS: Using somatic CRISPR/Cas9 gene editing, we generated liver-specific VPS35L or VPS26C-deficient mice. We determined total and surface levels of LDLR and LRP1 and plasma lipids. In addition, we studied the protein levels and composition of CCC and retriever. RESULTS: Hepatocyte VPS35L deficiency reduced VPS26C levels but had minimal impact on CCC composition. VPS35L deletion decreased hepatocytic surface expression of LDLR and LRP1, accompanied by a 21% increase in plasma cholesterol levels. Hepatic VPS26C ablation affected neither levels of VPS35L and CCC subunits, nor plasma lipid concentrations. However, VPS26C deficiency increased hepatic LDLR protein levels by 2-fold, probably compensating for reduced LRP1 functioning, as we showed in VPS26C-deficient hepatoma cells. Upon PCSK9 (proprotein convertase subtilisin/kexin type 9)-mediated LDLR elimination, VPS26C ablation delayed postprandial triglyceride clearance and increased plasma triglyceride levels by 26%. CONCLUSIONS: Our study suggests that VPS35L is shared between retriever and CCC to facilitate LDLR and LRP1 transport from endosomes to the cell surface. Conversely, retriever subunit VPS26C selectively transports LRP1, but not LDLR, and thereby may control hepatic uptake of postprandial triglyceride-rich lipoprotein remnants.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pró-Proteína Convertase 9 , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL , Triglicerídeos/metabolismo
6.
BMC Biol ; 21(1): 184, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667308

RESUMO

BACKGROUND: Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ between family members carrying the same genetic variant. Computational modelling of metabolic networks may identify putative sources of this inter-patient heterogeneity. Here, we mainly focus on medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It is an enigma why some MCADD patients-if untreated-are at risk to develop severe metabolic decompensations, whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients. RESULTS: We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabolites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. Enzymes are also either membrane-bound or in the matrix. This metabolite partitioning is a novel model attribute and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the sequestration of CoA as medium-chain acyl-CoA esters. Analysis of urine from MCADD patients obtained during a metabolic decompensation showed an accumulation of medium- and short-chain acylcarnitines, just like the acyl-CoA pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increasing short-chain acyl-CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient-derived fibroblasts indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD that has not been explored before. Personalised models based on these proteomics data confirmed an increased pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD patients. CONCLUSIONS: We present a detailed, validated kinetic model of mFAO in human liver, with solubility-dependent metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direction to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.


Assuntos
Erros Inatos do Metabolismo Lipídico , Metabolismo dos Lipídeos , Humanos , Acil-CoA Desidrogenase/genética , Coenzima A , Erros Inatos do Metabolismo Lipídico/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L521-L535, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36808722

RESUMO

Lung fibroblasts are implicated in abnormal tissue repair in chronic obstructive pulmonary disease (COPD). The exact mechanisms are unknown and comprehensive analysis comparing COPD- and control fibroblasts is lacking. The aim of this study is to gain insight into the role of lung fibroblasts in COPD pathology using unbiased proteomic and transcriptomic analysis. Protein and RNA were isolated from cultured parenchymal lung fibroblasts of 17 patients with stage IV COPD and 16 non-COPD controls. Proteins were analyzed using LC-MS/MS and RNA through RNA sequencing. Differential protein and gene expression in COPD was assessed via linear regression, followed by pathway enrichment, correlation analysis, and immunohistological staining in lung tissue. Proteomic and transcriptomic data were compared to investigate the overlap and correlation between both levels of data. We identified 40 differentially expressed (DE) proteins and zero DE genes between COPD and control fibroblasts. The most significant DE proteins were HNRNPA2B1 and FHL1. Thirteen of the 40 proteins were previously associated with COPD, including FHL1 and GSTP1. Six of the 40 proteins were related to telomere maintenance pathways, and were positively correlated with the senescence marker LMNB1. No significant correlation between gene and protein expression was observed for the 40 proteins. We hereby describe 40 DE proteins in COPD fibroblasts including previously described COPD proteins (FHL1, GSTP1) and new COPD research targets like HNRNPA2B1. Lack of overlap and correlation between gene and protein data supports the use of unbiased proteomics analysis and indicates that different types of information are generated with both methods.


Assuntos
Proteômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , RNA/metabolismo , Fibroblastos/metabolismo , Proteínas Musculares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo
8.
Hepatology ; 74(5): 2491-2507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34157136

RESUMO

BACKGROUND AND AIMS: Patients with glycogen storage disease type 1a (GSD-1a) primarily present with life-threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long-term complications still occur, such as liver tumor development. Variations in residual glucose-6-phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients. However, lack of insight into the relationship between G6PC1 activity and symptoms/complications and poor understanding of the underlying disease mechanisms pose major challenges to provide optimal health care and quality of life for GSD-1a patients. Currently available GSD-1a animal models are not suitable to systematically investigate the relationship between hepatic G6PC activity and phenotypic heterogeneity or the contribution of gene-gene interactions (GGIs) in the liver. APPROACH AND RESULTS: To meet these needs, we generated and characterized a hepatocyte-specific GSD-1a mouse model using somatic CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing. Hepatic G6pc editing reduced hepatic G6PC activity up to 98% and resulted in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly, hepatic steatosis (HS), and increased liver tumor incidence. This approach was furthermore successful in simultaneously modulating hepatic G6PC and carbohydrate response element-binding protein, a transcription factor that is activated in GSD-1a and protects against HS under these conditions. Importantly, it also allowed for the modeling of a spectrum of GSD-1a phenotypes in terms of hepatic G6PC activity, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly and HS. CONCLUSIONS: In conclusion, we show that somatic CRISPR/Cas9-mediated gene editing allows for the modeling of a spectrum of hepatocyte-borne GSD-1a disease symptoms in mice and to efficiently study GGIs in the liver. This approach opens perspectives for translational research and will likely contribute to personalized treatments for GSD-1a and other genetic liver diseases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Heterogeneidade Genética , Doença de Depósito de Glicogênio Tipo I/genética , Fenótipo , Animais , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
BMC Biol ; 19(1): 154, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330275

RESUMO

BACKGROUND: The skeletal muscle plays a central role in glucose homeostasis through the uptake of glucose from the extracellular medium in response to insulin. A number of factors are known to disrupt the normal response to insulin leading to the emergence of insulin resistance (IR). Advanced age and a high-fat diet are factors that increase the susceptibility to IR, with lipid accumulation in the skeletal muscle being a key driver of this phenomenon. It is debated, however, whether lipid accumulation arises due to dietary lipid overload or from a decline of mitochondrial function. To gain insights into the interplay of diet and age in the flexibility of muscle lipid and glucose handling, we combined lipidomics, proteomics, mitochondrial function analysis and computational modelling to investigate young and aged mice on a low- or high-fat diet (HFD). RESULTS: As expected, aged mice were more susceptible to IR when given a HFD than young mice. The HFD induced intramuscular lipid accumulation specifically in aged mice, including C18:0-containing ceramides and diacylglycerols. This was reflected by the mitochondrial ß-oxidation capacity, which was upregulated by the HFD in young, but not in old mice. Conspicuously, most ß-oxidation proteins were upregulated by the HFD in both groups, but carnitine palmitoyltransferase 1B (CPT1B) declined in aged animals. Computational modelling traced the flux control mostly to CPT1B, suggesting a CPT1B-driven loss of flexibility to the HFD with age. Finally, in old animals, glycolytic protein levels were reduced and less flexible to the diet. CONCLUSION: We conclude that intramuscular lipid accumulation and decreased insulin sensitivity are not due to age-related mitochondrial dysfunction or nutritional overload alone, but rather to their combined effects. Moreover, we identify CPT1B as a potential target to counteract age-dependent intramuscular lipid accumulation and thereby IR.


Assuntos
Resistência à Insulina , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Camundongos , Músculo Esquelético/metabolismo
10.
Anal Chem ; 93(32): 11215-11224, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34355890

RESUMO

The accurate processing of complex liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) data from biological samples is a major challenge for metabolomics, proteomics, and related approaches. Here, we present the pipelines and systems for threshold-avoiding quantification (PASTAQ) LC-MS/MS preprocessing toolset, which allows highly accurate quantification of data-dependent acquisition LC-MS/MS datasets. PASTAQ performs compound quantification using single-stage (MS1) data and implements novel algorithms for high-performance and accurate quantification, retention time alignment, feature detection, and linking annotations from multiple identification engines. PASTAQ offers straightforward parameterization and automatic generation of quality control plots for data and preprocessing assessment. This design results in smaller variance when analyzing replicates of proteomes mixed with known ratios and allows the detection of peptides over a larger dynamic concentration range compared to widely used proteomics preprocessing tools. The performance of the pipeline is also demonstrated in a biological human serum dataset for the identification of gender-related proteins.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Algoritmos , Cromatografia Líquida , Humanos , Peptídeos , Proteoma
11.
Hepatology ; 72(5): 1638-1653, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083759

RESUMO

BACKGROUND AND AIMS: Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. APPROACH AND RESULTS: Liver-specific G6pc-knockout (L-G6pc-/- ) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. CONCLUSIONS: Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Dependovirus/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glucose-6-Fosfatase/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Glicólise , Hepatócitos , Humanos , Lipogênese , Lipoproteínas VLDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Interferente Pequeno/genética , Triglicerídeos/metabolismo
12.
J Inherit Metab Dis ; 44(4): 879-892, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739445

RESUMO

Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc-/- ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc-/- mice. In hypoglycemic conditions, enhanced adipose tissue lipolysis was the main driver of liver steatosis, supported by elevated free fatty acid concentrations in GSD Ia mice and GSD Ia patients. Plasma very-low-density lipoprotein (VLDL) levels were increased in GSD Ia patients and in normoglycemic L-G6pc-/- mice, and further elevated in hypoglycemic L-G6pc-/- mice. VLDL-TG secretion rates were doubled in normo- and hypoglycemic L-G6pc-/- mice, while VLDL-TG catabolism was selectively inhibited in hypoglycemic L-G6pc-/- mice. In conclusion, fasting-induced hypoglycemia in L-G6pc-/- mice promotes adipose tissue lipolysis and arrests VLDL catabolism. This mechanism likely contributes to aggravated liver steatosis and dyslipidemia in GSD Ia patients with poor glycemic control and may explain clinical heterogeneity in hypertriglyceridemia between GSD Ia patients.


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Hipertrigliceridemia/etiologia , Hipoglicemia/etiologia , Lipoproteínas VLDL/metabolismo , Triglicerídeos/metabolismo , Adulto , Idoso , Animais , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Feminino , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio Tipo I/genética , Doença de Depósito de Glicogênio Tipo I/metabolismo , Hepatócitos/metabolismo , Humanos , Hipertrigliceridemia/prevenção & controle , Hipoglicemia/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Pessoa de Meia-Idade
13.
Arterioscler Thromb Vasc Biol ; 40(4): 973-985, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31996024

RESUMO

OBJECTIVE: STAP1, encoding for STAP1 (signal transducing adaptor family member 1), has been reported as a candidate gene associated with familial hypercholesterolemia. Unlike established familial hypercholesterolemia genes, expression of STAP1 is absent in liver but mainly observed in immune cells. In this study, we set out to validate STAP1 as a familial hypercholesterolemia gene. Approach and Results: A whole-body Stap1 knockout mouse model (Stap1-/-) was generated and characterized, without showing changes in plasma lipid levels compared with controls. In follow-up studies, bone marrow from Stap1-/- mice was transplanted to Ldlr-/- mice, which did not show significant changes in plasma lipid levels or atherosclerotic lesions. To functionally assess whether STAP1 expression in B cells can affect hepatic function, HepG2 cells were cocultured with peripheral blood mononuclear cells isolated from heterozygotes carriers of STAP1 variants and controls. The peripheral blood mononuclear cells from STAP1 variant carriers and controls showed similar LDLR mRNA and protein levels. Also, LDL (low-density lipoprotein) uptake by HepG2 cells did not differ upon coculturing with peripheral blood mononuclear cells isolated from either STAP1 variant carriers or controls. In addition, plasma lipid profiles of 39 carriers and 71 family controls showed no differences in plasma LDL cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and lipoprotein(a) levels. Similarly, B-cell populations did not differ in a group of 10 STAP1 variant carriers and 10 age- and sex-matched controls. Furthermore, recent data from the UK Biobank do not show association between STAP1 rare gene variants and LDL cholesterol. CONCLUSIONS: Our combined studies in mouse models and carriers of STAP1 variants indicate that STAP1 is not a familial hypercholesterolemia gene.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Animais , Aterosclerose/sangue , Aterosclerose/genética , Linfócitos B/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Lipídeos/sangue , Linfócitos/imunologia , Masculino , Camundongos Knockout , Monócitos/imunologia
14.
Eur Heart J ; 41(9): 1040-1053, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630160

RESUMO

AIMS: Genome-wide association studies have previously identified INSIG2 as a candidate gene for plasma low-density lipoprotein cholesterol (LDL-c). However, we suspect a role for CCDC93 in the same locus because of its involvement in the recycling of the LDL-receptor (LDLR). METHODS AND RESULTS: Characterization of the INSIG2 locus was followed by studies in over 107 000 individuals from the general population, the Copenhagen General Population Study and the Copenhagen City Heart Study, for associations of genetic variants with plasma lipids levels, with risk of myocardial infarction (MI) and with cardiovascular mortality. CCDC93 was furthermore studied in cells and mice. The lead variant of the INSIG2 locus (rs10490626) is not associated with changes in the expression of nearby genes but is a part of a genetic block, which excludes INSIG2. This block includes a coding variant in CCDC93 p.Pro228Leu, which is in strong linkage disequilibrium with rs10490626 (r2 > 0.96). In the general population, separately and combined, CCDC93 p.Pro228Leu is dose-dependently associated with lower LDL-c (P-trend 2.5 × 10-6 to 8.0 × 10-9), with lower risk of MI (P-trend 0.04-0.002) and lower risk of cardiovascular mortality (P-trend 0.005-0.004). These results were validated for LDL-c, risk of both coronary artery disease and MI in meta-analyses including from 194 000 to >700 000 participants. The variant is shown to increase CCDC93 protein stability, while overexpression of human CCDC93 decreases plasma LDL-c in mice. Conversely, CCDC93 ablation reduces LDL uptake as a result of reduced LDLR levels at the cell membrane. CONCLUSION: This study provides evidence that a common variant in CCDC93, encoding a protein involved in recycling of the LDLR, is associated with lower LDL-c levels, lower risk of MI and cardiovascular mortality.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Proteínas de Transporte Vesicular/genética , Animais , LDL-Colesterol/genética , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Receptores de LDL/genética
15.
J Lipid Res ; 61(3): 291-305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31506275

RESUMO

Bile acids (BAs) facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5. These receptors are targets for therapy in cholestatic and metabolic diseases. However, dissimilarities in BA metabolism between humans and mice complicate translation of preclinical data. Cytochrome P450 family 2 subfamily c polypeptide 70 (CYP2C70) was recently proposed to catalyze the formation of rodent-specific muricholic acids (MCAs). With CRISPR/Cas9-mediated somatic genome editing, we generated an acute hepatic Cyp2c70 knockout mouse model (Cyp2c70ako) to clarify the role of CYP2C70 in BA metabolism in vivo and evaluate whether its activity modulates effects of pharmacologic FXR activation on cholesterol homeostasis. In Cyp2c70ako mice, chenodeoxycholic acid (CDCA) increased at the expense of ßMCA, resulting in a more hydrophobic human-like BA pool. Tracer studies demonstrated that, in vivo, CYP2C70 catalyzes the formation of ßMCA primarily by sequential 6ß-hydroxylation and C7-epimerization of CDCA, generating αMCA as an intermediate metabolite. Physiologically, the humanized BA composition in Cyp2c70ako mice blunted the stimulation of fecal cholesterol disposal in response to FXR activation compared with WT mice, predominantly due to reduced stimulation of transintestinal cholesterol excretion. Thus, deletion of hepatic Cyp2c70 in adult mice translates into a human-like BA pool composition and impacts the response to pharmacologic FXR activation. This Cyp2c70ako mouse model may be a useful tool for future studies of BA signaling and metabolism that informs human disease development and treatment.


Assuntos
Ácidos e Sais Biliares/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Hepatology ; 70(6): 2171-2184, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31102537

RESUMO

It is well established that, besides facilitating lipid absorption, bile acids act as signaling molecules that modulate glucose and lipid metabolism. Bile acid metabolism, in turn, is controlled by several nutrient-sensitive transcription factors. Altered intrahepatic glucose signaling in type 2 diabetes associates with perturbed bile acid synthesis. We aimed to characterize the regulatory role of the primary intracellular metabolite of glucose, glucose-6-phosphate (G6P), on bile acid metabolism. Hepatic gene expression patterns and bile acid composition were analyzed in mice that accumulate G6P in the liver, that is, liver-specific glucose-6-phosphatase knockout (L-G6pc-/- ) mice, and mice treated with a pharmacological inhibitor of the G6P transporter. Hepatic G6P accumulation induces sterol 12α-hydroxylase (Cyp8b1) expression, which is mediated by the major glucose-sensitive transcription factor, carbohydrate response element-binding protein (ChREBP). Activation of the G6P-ChREBP-CYP8B1 axis increases the relative abundance of cholic-acid-derived bile acids and induces physiologically relevant shifts in bile composition. The G6P-ChREBP-dependent change in bile acid hydrophobicity associates with elevated plasma campesterol/cholesterol ratio and reduced fecal neutral sterol loss, compatible with enhanced intestinal cholesterol absorption. Conclusion: We report that G6P, the primary intracellular metabolite of glucose, controls hepatic bile acid synthesis. Our work identifies hepatic G6P-ChREBP-CYP8B1 signaling as a regulatory axis in control of bile acid and cholesterol metabolism.


Assuntos
Ácidos e Sais Biliares/biossíntese , Glucose-6-Fosfato/fisiologia , Fígado/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Colesterol/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esteroide 12-alfa-Hidroxilase/fisiologia
17.
Circ Res ; 122(12): 1648-1660, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545368

RESUMO

RATIONALE: COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. OBJECTIVE: The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. METHODS AND RESULTS: Using liver-specific Commd1, Commd6, or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. CONCLUSIONS: Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/prevenção & controle , LDL-Colesterol/sangue , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aterosclerose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Proteínas do Citoesqueleto/genética , Deleção de Genes , Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico , Triglicerídeos/análise , Proteínas Supressoras de Tumor/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 38(7): 1440-1453, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853565

RESUMO

OBJECTIVE: Studies into the role of LRP1 (low-density lipoprotein receptor-related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in LRP1 (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare LRP1 variants identified in subjects with extremely low HDL-C levels. APPROACH AND RESULTS: In 2 subjects with HDL-C below the first percentile for age and sex and moderately elevated triglycerides, we identified 2 rare variants in LRP1: p.Val3244Ile and p.Glu3983Asp. Both variants decrease LRP1 expression and stability. We show in a series of translational experiments that these variants culminate in reduced trafficking of ABCA1 (ATP-binding cassette A1) to the cell membrane. This is accompanied by an increase in cell surface expression of SR-B1 (scavenger receptor class B type 1). Combined these effects may contribute to low HDL-C levels in our study subjects. Supporting these findings, we provide epidemiological evidence that rs116133520 is associated with apo (apolipoprotein) A1 but not with apoB levels. CONCLUSIONS: This study provides the first evidence that rare variants in LRP1 are associated with changes in human lipid metabolism. Specifically, this study shows that LRP1 may affect HDL metabolism by virtue of its effect on both ABCA1 and SR-B1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , HDL-Colesterol/metabolismo , Fibroblastos/metabolismo , Variação Genética , Hipoalfalipoproteinemias/sangue , Hipoalfalipoproteinemias/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores Depuradores Classe B/metabolismo , Apolipoproteína A-I/sangue , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipoalfalipoproteinemias/diagnóstico , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fenótipo , Estudos Prospectivos , Estabilidade Proteica , Transporte Proteico , Triglicerídeos/sangue
19.
Adv Exp Med Biol ; 1158: 101-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452138

RESUMO

Targeted mass spectrometry in the selected or parallel reaction monitoring (SRM or PRM) mode is a widely used methodology to quantify proteins based on so-called signature or proteotypic peptides. SRM has the advantage of being able to quantify a range of proteins in a single analysis, for example, to measure the level of enzymes comprising a biochemical pathway. In this chapter, we will detail how to set up an SRM assay on the example of the mitochondrial protein succinate dehydrogenase [ubiquinone] flavoprotein subunit (mouse UniProt-code Q8K2B3). First, we will outline the in silico assay design including the choice of peptides based on a range of properties. We will further delineate different quantification strategies and introduce the reader to LC-MS assay development including the selection of the optimal peptide charge state and fragment ions as well as a discussion of the dynamic range of detection. The chapter will close with an application from the area of mitochondrial biology related to the quantification of a set of proteins isolated from mouse liver mitochondria in a study on mitochondrial respiratory flux decline in aging mouse muscle.


Assuntos
Mitocôndrias , Proteômica , Animais , Cromatografia Líquida , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Peptídeos/química , Proteômica/instrumentação , Proteômica/métodos , Espectrometria de Massas em Tandem
20.
Gastroenterology ; 152(5): 1126-1138.e6, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28065787

RESUMO

BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE) contribute. The mechanisms controlling the flux of cholesterol through the TICE pathway, however, are poorly understood. We aimed to identify mechanisms that regulate and stimulate TICE. METHODS: We performed studies with C57Bl/6J mice, as well as with mice with intestine-specific knockout of the farnesoid X receptor (FXR), mice that express an FXR transgene specifically in the intestine, and ABCG8-knockout mice. Mice were fed a control diet or a diet supplemented with the FXR agonist PX20606, with or without the cholesterol absorption inhibitor ezetimibe. Some mice with intestine-specific knockout of FXR were given daily injections of fibroblast growth factor (FGF)19. To determine fractional cholesterol absorption, mice were given intravenous injections of cholesterol D5 and oral cholesterol D7. Mice were given 13C-acetate in drinking water for measurement of cholesterol synthesis. Bile cannulations were performed and biliary cholesterol secretion rates were assessed. In a separate set of experiments, bile ducts of male Wistar rats were exteriorized, allowing replacement of endogenous bile by a model bile. RESULTS: In mice, we found TICE to be regulated by intestinal FXR via induction of its target gene Fgf15 (FGF19 in rats and human beings). Stimulation of this pathway caused mice to excrete up to 60% of their total cholesterol content each day. PX20606 and FGF19 each increased the ratio of muricholate:cholate in bile, inducing a more hydrophilic bile salt pool. The altered bile salt pool stimulated robust secretion of cholesterol into the intestinal lumen via the sterol-exporting heterodimer adenosine triphosphate binding cassette subfamily G member 5/8 (ABCG5/G8). Of note, the increase in TICE induced by PX20606 was independent of changes in cholesterol absorption. CONCLUSIONS: Hydrophilicity of the bile salt pool, controlled by FXR and FGF15/19, is an important determinant of cholesterol removal via TICE. Strategies that alter bile salt pool composition might be developed for the prevention of cardiovascular disease. Transcript profiling: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=irsrayeohfcntqx&acc=GSE74101.


Assuntos
Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Eliminação Intestinal/genética , Mucosa Intestinal/metabolismo , Lipoproteínas/genética , Receptores Citoplasmáticos e Nucleares/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Benzoatos/farmacologia , Ductos Biliares , Ezetimiba/farmacologia , Eliminação Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Isoxazóis/farmacologia , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA