Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nanotechnology ; 29(23): 235202, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29629710

RESUMO

Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (105) with better endurance (∼2000 cycles) and longer data retention (104 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.

2.
Nanotechnology ; 29(38): 385207, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29911987

RESUMO

The conductive-bridge random access memory (CBRAM) has become one of the most suitable candidates for non-volatile memory in next-generation information and communication technology. The resistive switching (RS) mechanism of CBRAM depends on the formation/annihilation of the conductive filament (CF) between the active metal electrode and the inert electrode. However, excessive ion injection from the active electrode into the solid electrolyte reduces the uniformity and reliability of the RS devices. To solve this problem, we investigated the RS characteristics of a CuSn alloy active electrode with different compositions of Cux-Sn1-x (0.13 < X < 0.55). The RS characteristics were further improved by inserting a dysprosium (Dy) or lutetium (Lu) buffer layer at the interface of Cux-Sn1-x/Al2O3. Electrical analysis of the optimal Cu0.4-Sn0.73/Lu-based CBRAM exhibited stable RS behavior with low operation voltage (SET: 0.7 V and RESET: -0.3 V), a high on state/off state resistive ratio (106), AC cyclic endurance (>104), and stable retention (85 °C/10 years). To achieve these performance parameters, CFs were locally formed inside the electrolyte using a modified CuSn active electrode, and the amount of Cu-ion injection was reduced by inserting the Dy or Lu buffer layer between the CuSn active electrode and the electrolyte. In particular, conductive-atomic force microscopy results at the Dy or Lu/Al2O3 interface directly showed and defined the diameter of the CF.

3.
Nanotechnology ; 28(17): 175201, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28357990

RESUMO

Amorphous oxide semiconductor thin-film transistors (TFT) have been considered as outstanding switch devices owing to their high mobility. However, because of their amorphous channel material with a certain level of density of states, a fast transient charging effect in an oxide TFT occurs, leading to an underestimation of the mobility value. In this paper, the effects of the fast charging of high-performance bilayer oxide semiconductor TFTs on mobility are examined in order to determine an accurate mobility extraction method. In addition, an approach based on a pulse I D -V G measurement method is proposed to determine the intrinsic mobility value. Even with the short pulse I D -V G measurement, a certain level of fast transient charge trapping cannot be avoided as long as the charge-trap start time is shorter than the pulse rising time. Using a pulse-amplitude-dependent threshold voltage characterization method, we estimated a correction factor for the apparent mobility, thus allowing us to determine the intrinsic mobility.

4.
ACS Appl Mater Interfaces ; 10(9): 8124-8131, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29441789

RESUMO

The next-generation electronic society is dependent on the performance of nonvolatile memory devices, which has been continuously improving. In the last few years, many memory devices have been introduced. However, atomic switches are considered to be a simple and reliable basis for next-generation nonvolatile devices. In general, atomic switch-based resistive switching is controlled by electrochemical metallization. However, excess ion injection from the entire area of the active electrode into the switching layer causes device nonuniformity and degradation of reliability. Here, we propose the fabrication of a high-performance atomic switch based on Cu x-Se1- x by inserting lanthanide (Ln) metal buffer layers such as neodymium (Nd), samarium (Sm), dysprosium (Dy), or lutetium (Lu) between the active metal layer and the electrolyte. Current-atomic force microscopy results confirm that Cu ions penetrate through the Ln-buffer layer and form thin conductive filaments inside the switching layer. Compared with the Pt/Cu x-Se1- x/Al2O3/Pt device, the optimized Pt/Cu x-Se1- x/Ln/Al2O3/Pt devices show improvement in the on/off resistance ratio (102-107), retention (10 years/85 °C), endurance (∼10 000 cycles), and uniform resistance state distribution.

5.
Sci Rep ; 7(1): 8235, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811475

RESUMO

The carrier transport and device instability of amorphous oxide semiconductor devices are influenced by defects that are exponentially distributed in energy, because of amorphous phase channels and front/back interfaces with a large number of sub-gap states. Thus, understanding defects and charge trapping in oxide semiconductor transistors is required for being core device element in reliable production lines. In this paper, we present the transient charging effect, the charge trapping mechanism, and the dynamic charge transport of high-mobility bilayer oxide semiconductor transistors. To this end, we exploited microsecond ramps, pulse ID-VG, transient current, and discharge current analysis methods. The mobility enhancement rate of single HfInZnO (HIZO) and bilayer HfInZnO-InZnO (HIZO-IZO) were 173.8 and 28.8%, respectively, in the charge-trapping-free environment. Transient charge trapping can be classified to temperature insensitive fast charging and thermally activated slow charging with two different trap energies. Insignificant fast transient charging of a bilayer-oxide high-mobility thin film transistor(TFT) can be explained by the low density of sub-gap states in the oxide semiconductor. Understanding defects and transient charging in the oxide semiconductor helps to determine the origin of device instability of oxide TFTs, and finally, to solve this problem.

6.
ACS Appl Mater Interfaces ; 9(32): 27073-27082, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28777534

RESUMO

In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (105), excellent cyclic endurance (>103), and long retention time (>104 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA