Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Genes Dev ; 27(2): 197-210, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23322301

RESUMO

The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Neoplasias Pulmonares/fisiopatologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Cromatina/metabolismo , Perfilação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
3.
Nature ; 483(7391): 613-7, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22425996

RESUMO

Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.


Assuntos
Benzimidazóis/farmacologia , Ensaios Clínicos Fase II como Assunto , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Farmacogenética/métodos , Taxoides/uso terapêutico , Proteínas Quinases Ativadas por AMP , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Benzimidazóis/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Docetaxel , Avaliação Pré-Clínica de Medicamentos , Fluordesoxiglucose F18 , Genes p53/genética , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Tomografia por Emissão de Pósitrons , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Cancer Cell ; 11(3): 217-27, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17349580

RESUMO

Mutations in the EGFR kinase are a cause of non-small-cell lung cancer. To understand their mechanism of activation and effects on drug binding, we studied the kinetics of the L858R and G719S mutants and determined their crystal structures with inhibitors including gefitinib, AEE788, and a staurosporine. We find that the mutations activate the kinase by disrupting autoinhibitory interactions, and that they accelerate catalysis as much as 50-fold in vitro. Structures of inhibitors in complex with both wild-type and mutant kinases reveal similar binding modes for gefitinib and AEE788, but a marked rotation of the staurosporine in the G719S mutant. Strikingly, direct binding measurements show that gefitinib binds 20-fold more tightly to the L858R mutant than to the wild-type enzyme.


Assuntos
Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/química , Neoplasias Pulmonares/metabolismo , Modelos Moleculares , Mutação , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe , Humanos , Lapatinib , Conformação Proteica , Estrutura Terciária de Proteína , Purinas/química , Quinazolinas/química , Estaurosporina/análogos & derivados , Estaurosporina/química
5.
Nature ; 450(7171): 893-8, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17982442

RESUMO

Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in approximately 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.


Assuntos
Adenocarcinoma/genética , Genoma Humano/genética , Neoplasias Pulmonares/genética , Neoplasias/genética , Linhagem Celular Tumoral , Deleção Cromossômica , Cromossomos Humanos Par 14/genética , Amplificação de Genes/genética , Genômica , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Perda de Heterozigosidade/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Proto-Oncogene Mas , Interferência de RNA , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 105(6): 2070-5, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18227510

RESUMO

Lung cancers caused by activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to small molecule tyrosine kinase inhibitors (TKIs), but the efficacy of these agents is often limited because of the emergence of drug resistance conferred by a second mutation, T790M. Threonine 790 is the "gatekeeper" residue, an important determinant of inhibitor specificity in the ATP binding pocket. The T790M mutation has been thought to cause resistance by sterically blocking binding of TKIs such as gefitinib and erlotinib, but this explanation is difficult to reconcile with the fact that it remains sensitive to structurally similar irreversible inhibitors. Here, we show by using a direct binding assay that T790M mutants retain low-nanomolar affinity for gefitinib. Furthermore, we show that the T790M mutation activates WT EGFR and that introduction of the T790M mutation increases the ATP affinity of the oncogenic L858R mutant by more than an order of magnitude. The increased ATP affinity is the primary mechanism by which the T790M mutation confers drug resistance. Crystallographic analysis of the T790M mutant shows how it can adapt to accommodate tight binding of diverse inhibitors, including the irreversible inhibitor HKI-272, and also suggests a structural mechanism for catalytic activation. We conclude that the T790M mutation is a "generic" resistance mutation that will reduce the potency of any ATP-competitive kinase inhibitor and that irreversible inhibitors overcome this resistance simply through covalent binding, not as a result of an alternative binding mode.


Assuntos
Trifosfato de Adenosina/metabolismo , Resistência a Medicamentos/genética , Receptores ErbB/genética , Mutação , Animais , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Gefitinibe , Insetos , Cinética , Conformação Proteica , Quinazolinas/farmacologia
7.
Mol Cell Biol ; 24(7): 3025-35, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15024089

RESUMO

The Ras-mitogen-activated protein (Ras-MAP) kinase pathway regulates various cellular processes, including gene expression, cell proliferation, and survival. Ribosomal S6 kinase (RSK), a key player in this pathway, modulates the activities of several cytoplasmic and nuclear proteins via phosphorylation. Here we report the characterization of the cytoskeletal protein filamin A (FLNa) as a membrane-associated RSK target. We show that the N-terminal kinase domain of RSK phosphorylates FLNa on Ser(2152) in response to mitogens. Inhibition of MAP kinase signaling with UO126 or mutation of Ser(2152) to Ala on FLNa prevents epidermal growth factor (EGF)-stimulated phosphorylation of FLNa in vivo. Furthermore, phosphorylation of FLNa on Ser(2152) is significantly enhanced by the expression of wild-type RSK and antagonized by kinase-inactive RSK or specific reduction of endogenous RSK. Strikingly, EGF-induced, FLNa-dependent migration of human melanoma cells is significantly reduced by UO126 treatment. Together, these data provide substantial evidence that RSK phosphorylates FLNa on Ser(2152) in vivo. Given that phosphorylation of FLNa on Ser(2152) is required for Pak1-mediated membrane ruffling, our results suggest a novel role for RSK in the regulation of the actin cytoskeleton.


Assuntos
Proteínas Contráteis/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Butadienos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Colforsina/metabolismo , Proteínas Contráteis/genética , Inibidores Enzimáticos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Filaminas , Humanos , Melanoma/metabolismo , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Nitrilas/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Serina/metabolismo
8.
Nat Genet ; 41(11): 1238-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19801978

RESUMO

Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development. Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations, is necessary for normal esophageal squamous development, promotes differentiation and proliferation of basal tracheal cells and cooperates in induction of pluripotent stem cells. SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Amplificação de Genes , Neoplasias Pulmonares/genética , Oncogenes/genética , Fatores de Transcrição SOXB1/genética , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Neoplasias Esofágicas/patologia , Genoma Humano , Humanos , Neoplasias Pulmonares/patologia , Interferência de RNA
9.
Mol Cell ; 29(3): 362-75, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18280241

RESUMO

The major participants of the Ras/ERK and PI3-kinase (PI3K) pathways are well characterized. The cellular response to activation of these pathways, however, can vary dramatically. How differences in signal strength, timing, spatial location, and cellular context promote specific cell-fate decisions remains unclear. Nuclear transport processes can have a major impact on the determination of cell fate; however, little is known regarding how nuclear transport is regulated by or regulates these pathways. Here we show that RSK and Akt, which are activated downstream of Ras/ERK and PI3K, respectively, modulate the Ran gradient and nuclear transport by interacting with, phosphorylating, and regulating Ran-binding protein 3 (RanBP3) function. Our findings highlight an important link between two major cell-fate determinants: nuclear transport and the Ras/ERK/RSK and PI3K/Akt signaling pathways.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas ras/metabolismo , Transporte Ativo do Núcleo Celular , Ativação Enzimática , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Especificidade por Substrato
10.
Cancer Biol Ther ; 6(5): 661-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17495523

RESUMO

Targeted cancer therapies impede cancer cell growth by inhibiting the function of activated oncogene products. Patients with non-small cell lung cancer and somatic mutations of EGFR can have a dramatic response to treatment with erlotinib and gefitinib; different somatic mutations are associated with different times to progression and survival. In this study, the relative and absolute potencies of two distinct EGFR tyrosine kinase inhibitors, erlotinib and an investigational irreversible inhibitor, HKI-272, were found to vary significantly in a panel of Ba/F3 cells transformed by representative EGFR somatic mutations. HKI-272 more potently inhibited the primary exon 20 insertion mutants, the secondary erlotinib-resistance mutants including T790M and many erlotinib-sensitive mutants including L858R. In contrast, erlotinib is a more potent inhibitor of the major exon 19 deletion mutants than is HKI-272. Analyses of EGFR autophosphorylation patterns confirmed the mutation-specific variation in relative potency of these tyrosine kinase inhibitors. Our finding that distinct EGFR inhibitors are more effective in vitro for different mutant forms of the protein suggests that tyrosine kinase inhibitor treatment could be tailored to specific EGFR mutations. More broadly, these results imply that the development and deployment of targeted therapies should focus on inhibition of specific cancer-causing mutations, not only on the mutated target.


Assuntos
Alelos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Quinolinas/farmacologia , Substituição de Aminoácidos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Primers do DNA/química , Cloridrato de Erlotinib , Humanos , Camundongos , Fragmentos de Peptídeos/química , Fosforilação , Mutação Puntual , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Retroviridae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA