RESUMO
The left hemisphere is dominant for language in most people, but lateralization strength varies between different tasks and individuals. A large body of literature has shown that handedness is associated with lateralization: left handers have weaker language lateralization on average, and a greater incidence of atypical (right hemisphere) lateralization; but typically, these studies have relied on a single measure of language lateralization. Here we consider the relationships between lateralization for two different language tasks. We investigated the influence of handedness on lateralization using functional transcranial Doppler sonography (fTCD), using an existing dataset (N = 151 adults, 21 left handed). We compared a speech production task (word generation) and a semantic association task. We demonstrated stronger left-lateralization for word generation than semantic association; and a moderate correlation between laterality indices for the two tasks (r = 0.59). Laterality indices were stronger for right than left handers, and left handers were more likely than right handers to have atypical (right hemisphere) lateralization or inconsistent lateralization between the two tasks. These results add to our knowledge of individual differences in lateralization and support the view that language lateralization is multifactorial rather than unitary.
Assuntos
Lateralidade Funcional , Fala , Adulto , Humanos , Idioma , Imageamento por Ressonância Magnética , Semântica , Ultrassonografia Doppler TranscranianaRESUMO
Magnetoencephalography studies in humans have shown word-selective activity in the left inferior frontal gyrus (IFG) approximately 130 ms after word presentation ( Pammer et al. 2004; Cornelissen et al. 2009; Wheat et al. 2010). The role of this early frontal response is currently not known. We tested the hypothesis that the IFG provides top-down constraints on word recognition using dynamic causal modeling of magnetoencephalography data collected, while subjects viewed written words and false font stimuli. Subject-specific dipoles in left and right occipital, ventral occipitotemporal and frontal cortices were identified using Variational Bayesian Equivalent Current Dipole source reconstruction. A connectivity analysis tested how words and false font stimuli differentially modulated activity between these regions within the first 300 ms after stimulus presentation. We found that left inferior frontal activity showed stronger sensitivity to words than false font and a stronger feedback connection onto the left ventral occipitotemporal cortex (vOT) in the first 200 ms. Subsequently, the effect of words relative to false font was observed on feedforward connections from left occipital to ventral occipitotemporal and frontal regions. These findings demonstrate that left inferior frontal activity modulates vOT in the early stages of word processing and provides a mechanistic account of top-down effects during word recognition.
Assuntos
Retroalimentação , Lobo Frontal/fisiologia , Magnetoencefalografia , Leitura , Reconhecimento Psicológico/fisiologia , Vocabulário , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Estimulação Luminosa , Estatísticas não Paramétricas , Aprendizagem Verbal/fisiologiaRESUMO
A previous study we reported in this journal suggested that left and right-handers may differ in their patterns of lateralization for different language tasks (Woodhead et al. 2019 R. Soc. Open Sci. 6, 181801. (doi:10.1098/rsos.181801)). However, it had too few left-handers (N = 7) to reach firm conclusions. For this update paper, further participants were added to the sample to create separate groups of left- (N = 31) and right-handers (N = 43). Two hypotheses were tested: (1) that lateralization would be weaker at the group level in left-than right-handers; and (2) that left-handers would show weaker covariance in lateralization between tasks, supporting a two-factor model. All participants performed the same protocol as in our previous paper: lateralization was measured using functional transcranial Doppler sonography during six different language tasks, on two separate testing sessions. The results supported hypothesis 1, with significant differences in laterality between groups for four out of six tasks. For hypothesis 2, structural equation modelling showed that there was stronger evidence for a two-factor model in left than right-handers; furthermore, examination of the factor loadings suggested that the pattern of laterality across tasks may also differ between handedness groups. These results expand on what is known about the differences in laterality between left- and right-handers.
RESUMO
Hemispheric dominance for language can vary from task to task, but it is unclear if this reflects error of measurement or independent lateralization of different language systems. We used functional transcranial Doppler sonography to assess language lateralization within the middle cerebral artery territory in 37 adults (seven left-handers) on six tasks, each given on two occasions. Tasks taxed different aspects of language function. A pre-registered structural equation analysis was used to compare models of means and covariances. For most people, a single lateralized factor explained most of the covariance between tasks. A minority, however, showed dissociation of asymmetry, giving a second factor. This was mostly derived from a receptive task, which was highly reliable but not lateralized. The results suggest that variation in the strength of language lateralization reflects true individual differences and not just error of measurement. The inclusion of several tasks in a laterality battery makes it easier to detect cases of atypical asymmetry.