Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nat Mater ; 22(3): 369-379, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36443576

RESUMO

Messenger RNA has now been used to vaccinate millions of people. However, the diversity of pulmonary pathologies, including infections, genetic disorders, asthma and others, reveals the lung as an important organ to directly target for future RNA therapeutics and preventatives. Here we report the screening of 166 polymeric nanoparticle formulations for functional delivery to the lungs, obtained from a combinatorial synthesis approach combined with a low-dead-volume nose-only inhalation system for mice. We identify P76, a poly-ß-amino-thio-ester polymer, that exhibits increased expression over formulations lacking the thiol component, delivery to different animal species with varying RNA cargos and low toxicity. P76 allows for dose sparing when delivering an mRNA-expressed Cas13a-mediated treatment in a SARS-CoV-2 challenge model, resulting in similar efficacy to a 20-fold higher dose of a neutralizing antibody. Overall, the combinatorial synthesis approach allowed for the discovery of promising polymeric formulations for future RNA pharmaceutical development for the lungs.


Assuntos
COVID-19 , Animais , Camundongos , RNA Mensageiro/genética , SARS-CoV-2/genética , Polímeros/metabolismo , Pulmão , RNA/metabolismo
2.
BMC Vet Res ; 18(1): 77, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197051

RESUMO

BACKGROUND: Transcriptomics has identified at-arrival differentially expressed genes associated with bovine respiratory disease (BRD) development; however, their use as prediction molecules necessitates further evaluation. Therefore, we aimed to selectively analyze and corroborate at-arrival mRNA expression from multiple independent populations of beef cattle. In a nested case-control study, we evaluated the expression of 56 mRNA molecules from at-arrival blood samples of 234 cattle across seven populations via NanoString nCounter gene expression profiling. Analysis of mRNA was performed with nSolver Advanced Analysis software (p < 0.05), comparing cattle groups based on the diagnosis of clinical BRD within 28 days of facility arrival (n = 115 Healthy; n = 119 BRD); BRD was further stratified for severity based on frequency of treatment and/or mortality (Treated_1, n = 89; Treated_2+, n = 30). Gene expression homogeneity of variance, receiver operator characteristic (ROC) curve, and decision tree analyses were performed between severity cohorts. RESULTS: Increased expression of mRNAs involved in specialized pro-resolving mediator synthesis (ALOX15, HPGD), leukocyte differentiation (LOC100297044, GCSAML, KLF17), and antimicrobial peptide production (CATHL3, GZMB, LTF) were identified in Healthy cattle. BRD cattle possessed increased expression of CFB, and mRNA related to granulocytic processes (DSG1, LRG1, MCF2L) and type-I interferon activity (HERC6, IFI6, ISG15, MX1). Healthy and Treated_1 cattle were similar in terms of gene expression, while Treated_2+ cattle were the most distinct. ROC cutoffs were used to generate an at-arrival treatment decision tree, which classified 90% of Treated_2+ individuals. CONCLUSIONS: Increased expression of complement factor B, pro-inflammatory, and type I interferon-associated mRNA hallmark the at-arrival expression patterns of cattle that develop severe clinical BRD. Here, we corroborate at-arrival mRNA markers identified in previous transcriptome studies and generate a prediction model to be evaluated in future studies. Further research is necessary to evaluate these expression patterns in a prospective manner.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Animais , Complexo Respiratório Bovino/diagnóstico , Complexo Respiratório Bovino/genética , Estudos de Casos e Controles , Bovinos , Doenças dos Bovinos/diagnóstico , Estudos Prospectivos , RNA Mensageiro/genética , Transcriptoma
3.
J Dairy Sci ; 105(9): 7750-7763, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35931482

RESUMO

Bovine respiratory disease (BRD) is a multifactorial disease which causes short- and long-term negative effects. Early detection is crucial for a prompt response to therapy, as well as to decrease mortality risk. Clinical scoring systems have been developed mostly in North America for screening calves at risk or suspected of having BRD, and these tools have also been applied in subtropical and tropical countries. However, it has been unknown whether these scoring systems had the same accuracy in tropical environmental conditions. Therefore, this study evaluated the accuracy of 4 different field techniques, as well as serum haptoglobin (HAP), to diagnose BRD in Holstein dairy calves in subtropical conditions. The tests used to diagnose BRD were thoracic ultrasound (TUS; positive if consolidation depth ≥1 cm), thoracic auscultation (AUSC; positive if crackles, wheezes, or silent areas were present), Wisconsin score (WISC; ≥2 categories with scores of ≥2), and California score (CALIF; positive if total score ≥5). Also, HAP was measured and classified as positive if ≥15 mg/dL. Heifers between 30 d of age and weaning (n = 482), residing on 17 commercial dairies in São Paulo state, were enrolled in this study. Bayesian latent class models were used with informative priors to evaluate the accuracy of TUS, AUSC, and HAP, and noninformative priors for the accuracy of WISC and CALIF. The percentage of calves positive for each test on each farm ranged from 0 to 56% for WISC, 11-51% for CALIF, 0-72% for TUS, 0-32% for AUSC, and 0-100% for HAP. The sensitivity (Se; 95% credible interval) and specificity (Sp) for WISC were 77.9% (64.8-90.2) and 81.9% (76.3-88.2). For CALIF, the Se was 67.1% (53.6-80.1) and Sp 79.1% (73.9-84.6). For TUS Se was 59.8% (46.5-73.1) and Sp was 84.8% (80.0-89.5), and for AUSC, Se was 58.8% (41.3-79.8) and Sp was 98.6% (95.7-99.9). The Se and Sp of HAP was 67.6% (55.3-78.8) and 46.7% (41.4-52.2), respectively. The performance of the scoring systems was similar to, or better than, the performance found in North American studies, despite the fact that calves were in a tropical environment.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Doenças Respiratórias , Animais , Teorema de Bayes , Complexo Respiratório Bovino/diagnóstico , Brasil , California , Bovinos , Feminino , Doenças Respiratórias/veterinária , Wisconsin
4.
Molecules ; 27(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35056864

RESUMO

Bovine respiratory syncytial virus (BRSV) is a major contributor to respiratory disease in cattle worldwide. Traditionally, BRSV infection is detected based on non-specific clinical signs, followed by reverse transcriptase-polymerase chain reaction (RT-PCR), the results of which can take days to obtain. Near-infrared aquaphotomics evaluation based on biochemical information from biofluids has the potential to support the rapid identification of BRSV infection in the field. This study evaluated NIR spectra (n = 240) of exhaled breath condensate (EBC) from dairy calves (n = 5) undergoing a controlled infection with BRSV. Changes in the organization of the aqueous phase of EBC during the baseline (pre-infection) and infected (post-infection and clinically abnormal) stages were found in the WAMACS (water matrix coordinates) C1, C5, C9, and C11, likely associated with volatile and non-volatile compounds in EBC. The discrimination of these chemical profiles by PCA-LDA models differentiated samples collected during the baseline and infected stages with an accuracy, sensitivity, and specificity >93% in both the calibration and validation. Thus, biochemical changes occurring during BRSV infection can be detected and evaluated with NIR-aquaphotomics in EBC. These findings form the foundation for developing an innovative, non-invasive, and in-field diagnostic tool to identify BRSV infection in cattle.


Assuntos
Testes Respiratórios/métodos , Doenças dos Bovinos/diagnóstico , Infecções por Vírus Respiratório Sincicial/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Calibragem , Bovinos , Doenças dos Bovinos/virologia , Linhagem Celular , Fotometria/métodos , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Bovino/isolamento & purificação , Sensibilidade e Especificidade , Água/análise , Água/química
5.
Curr Issues Mol Biol ; 42: 605-634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33627518

RESUMO

Vaccines can be powerful tools, but for some diseases, safe and effective vaccines have been elusive. New developments in nucleic acid sequencing, bioinformatics, and protein modeling are facilitating the discovery of previously unknown antigens through reverse vaccinology approaches. Sequencing the complementarity- determining region of antibodies and T cell receptors allows detailed assessment of the immune repertoire and identification of paratopes shared by many individuals, supporting the selection of antigens that may be broadly protective. Systems vaccinology approaches to asses the global host response to vaccination by evaluation of differentially expressed genes in blood, cellular or tissue transcriptomes can reveal previously unknown pathways and interactions related to protective immunity. While it is important to remember that discoveries made through reverse vaccinology and systems vaccinology must still be confirmed with traditional challenge models and clinical trials, these approaches can provide new perspectives that may help solve longstanding problems in veterinary vaccinology.


Assuntos
Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Proteínas/química , Vacinologia/métodos , Animais , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Biologia Computacional/métodos , Epitopos/genética , Epitopos/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Vacinas/genética , Vacinas/imunologia
6.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32611750

RESUMO

Since its detection in swine, influenza D virus (IDV) has been shown to be present in multiple animal hosts, and bovines have been identified as its natural reservoir. However, it remains unclear how IDVs emerge, evolve, spread, and maintain in bovine populations. Through multiple years of virological and serological surveillance in a single order-buyer cattle facility in Mississippi, we showed consistently high seroprevalence of IDVs in cattle and recovered a total of 32 IDV isolates from both healthy and sick animals, including those with antibodies against IDV. Genomic analyses of these isolates along with those isolated from other areas showed that active genetic reassortment occurred in IDV and that five reassortants were identified in the Mississippian facility. Two antigenic groups were identified through antigenic cartography analyses for these 32 isolates and representative IDVs from other areas. Remarkably, existing antibodies could not protect cattle from experimental reinfection with IDV. Additional phenotypic analyses demonstrated variations in growth dynamics and pathogenesis in mice between viruses independent of genomic constellation. In summary, this study suggests that, in addition to epidemiological factors, the ineffectiveness of preexisting immunity and cocirculation of a diverse viral genetic pool could facilitate its high prevalence in animal populations.IMPORTANCE Influenza D viruses (IDVs) are panzootic in multiple animal hosts, but the underlying mechanism is unclear. Through multiple years of surveillance in the same order-buyer cattle facility, 32 IDV isolates were recovered from both healthy and sick animals, including those with evident antibodies against IDV. Active reassortment occurred in the cattle within this facility and in those across other areas, and multiple reassortants cocirculated in animals. These isolates are shown with a large extent of phenotypic diversity in replication efficiency and pathogenesis but little in antigenic properties. Animal experiments demonstrated that existing antibodies could not protect cattle from experimental reinfection with IDV. This study suggests that, in addition to epidemiological factors, limited protection from preexisting immunity against IDVs in cattle herds and cocirculation of a diverse viral genetic pool likely facilitate the high prevalence of IDVs in animal populations.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Genoma Viral , Infecções por Orthomyxoviridae/epidemiologia , Vírus Reordenados/imunologia , Thogotovirus/imunologia , Animais , Bovinos , Monitoramento Epidemiológico , Fazendas , Variação Genética , Genótipo , Hospitais Veterinários , Imunidade Inata , Camundongos , Mississippi/epidemiologia , Tipagem Molecular , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Estudos Soroepidemiológicos , Thogotovirus/classificação , Thogotovirus/genética , Thogotovirus/patogenicidade , Replicação Viral
7.
Mol Ther ; 28(3): 805-819, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31995741

RESUMO

There is a clear need for low-cost, self-applied, long-lasting approaches to prevent human immunodeficiency virus (HIV) infection in both men and women, even with the advent of pre-exposure prophylaxis (PrEP). Broadly neutralizing antibodies represent an option to improve HIV prophylaxis, but intravenous delivery, cold-chain stability requirements, low cervicovaginal concentrations, and cost may preclude their use. Here, we present an approach to express the anti-GP120 broadly neutralizing antibody PGT121 in the primary site of inoculation, the female reproductive tract, using synthetic mRNA. Expression is achieved through aerosol delivery of unformulated mRNA in water. We demonstrated high levels of antibody expression for over 28 days with a single mRNA administration in the reproductive tract of sheep. In rhesus macaques, neutralizing antibody titers in secretions developed within 4 h and simian-HIV (SHIV) infection of ex vivo explants was prevented. Persistence of PGT121 in vaginal secretions and epithelium was achieved through the incorporation of a glycosylphosphatidylinositol (GPI) anchor into the heavy chain of the antibody. Overall, we present a new paradigm to deliver neutralizing antibodies to the female reproductive tract for the prevention of HIV infections.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Expressão Gênica , Anticorpos Anti-HIV/imunologia , Mucosa/imunologia , Mucosa/metabolismo , RNA Mensageiro/administração & dosagem , Vagina , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Aerossóis , Animais , Chlorocebus aethiops , Feminino , Imunofluorescência , Infecções por HIV/imunologia , HIV-1/imunologia , Camundongos , Testes de Neutralização , RNA Mensageiro/síntese química , Ovinos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vagina/imunologia , Vagina/metabolismo , Células Vero
8.
J Med Virol ; 91(4): 677-686, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30318625

RESUMO

Genotypes 3 and 4 hepatitis E virus (HEV) strains within the species Orthohepevirus A in the family Hepeviridae are zoonotic. Recently, a genotype 4 HEV was reportedly detected in fecal samples of cows, although independent confirmation is lacking. In this study, we first tested serum samples from 983 cows in different regions in the United States for the presence of immunoglobulin G (IgG) anti-HEV and found that 20.4% of cows were seropositive. The highest seroprevalence rate (68.4%) was from a herd in Georgia. In an attempt to genetically identify HEV in cattle, a prospective study was conducted in a known seropositive dairy herd by monitoring 10 newborn calves from birth to 6 months of age for evidence of HEV infection. At least 3 of the 10 calves seroconverted to IgG anti-HEV, and importantly the antibodies presented neutralized genotype 3 human HEV, thus, indicating the specificity of IgG anti-HEV in the cattle. However, our extensive attempts to identify HEV-related sequences in cattle using broad-spectrum reverse transcription-polymerase chain reaction assays and MiSeq deep-sequencing technology failed. The results suggest the existence of an agent antigenically related to HEV in cattle, although, contrary to published reports, we showed that the IgG recognizing HEV in cattle was not caused by HEV infection.


Assuntos
Doenças dos Bovinos/virologia , Vírus da Hepatite E/isolamento & purificação , Hepatite E/veterinária , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Feminino , Georgia/epidemiologia , Anticorpos Anti-Hepatite/sangue , Hepatite E/epidemiologia , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Imunoglobulina G/sangue , Estudos Prospectivos , Estudos Soroepidemiológicos
9.
Biologicals ; 46: 64-67, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28100412

RESUMO

Using viral metagenomics we analyzed four bovine serum pools assembled from 715 calves in the United States. Two parvoviruses, bovine parvovirus 2 (BPV2) and a previously uncharacterized parvovirus designated as bosavirus (BosaV), were detected in 3 and 4 pools respectively and their complete coding sequences generated. Based on NS1 protein identity, bosavirus qualifies as a member of a new species in the copiparvovirus genus. Also detected were low number of reads matching ungulate tetraparvovirus 2, bovine hepacivirus, and several papillomaviruses. This study further characterizes the diversity of viruses in calf serum with the potential to infect fetuses and through fetal bovine serum contaminate cell cultures.


Assuntos
Bovinos/sangue , Bovinos/virologia , Genoma Viral/genética , Metagenômica/métodos , Animais , Bocavirus/classificação , Bocavirus/genética , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Geografia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Filogenia , Análise de Sequência de DNA , Soro/virologia , Especificidade da Espécie , Estados Unidos , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/genética
10.
Antibiotics (Basel) ; 13(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38666998

RESUMO

Antimicrobials are crucial for treating bovine respiratory disease (BRD) in beef feedlots. Evidence is needed to support antimicrobial use (AMU) decisions, particularly in the early part of the feeding period when BRD risk is highest. The study objective was to describe changes in prevalence and antimicrobial susceptibility of BRD bacterial pathogens at feedlot processing (1 day on feed (1DOF)), 12 days later (13DOF), and for a subset at 36DOF following metaphylactic antimicrobial treatment. Mixed-origin steer calves (n = 1599) from Western Canada were managed as 16 pens of 100 calves, receiving either tulathromycin (n = 1199) or oxytetracycline (n = 400) at arrival. Deep nasopharyngeal swabs collected at all time points underwent culture and antimicrobial susceptibility testing (AST). Variability in the pen-level prevalence of bacteria and antimicrobial susceptibility profiles were observed over time, between years, and metaphylaxis options. Susceptibility to most antimicrobials was high, but resistance increased from 1DOF to 13DOF, especially for tetracyclines and macrolides. Simulation results suggested that sampling 20 to 30 calves per pen of 200 reflected the relative pen-level prevalence of the culture and AST outcomes of interest. Pen-level assessment of antimicrobial resistance early in the feeding period can inform the evaluation of AMU protocols and surveillance efforts and support antimicrobial stewardship in animal agriculture.

11.
Am J Vet Res ; 85(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422620

RESUMO

OBJECTIVE: To determine the efficacy of primary or booster intranasal vaccination of beef steers on clinical protection and pathogen detection following simultaneous challenge with bovine respiratory syncytial virus and bovine herpes virus 1. METHODS: 30 beef steers were randomly allocated to 3 different treatment groups starting at 2 months of age. Group A (n = 10) was administered a single dose of a parenteral modified-live vaccine and was moved to a separate pasture. Groups B (n = 10) and C (10) remained unvaccinated. At 6 months of age, all steers were weaned and transported. Subsequently, groups A and B received a single dose of an intranasal modified-live vaccine vaccine while group C remained unvaccinated. Group C was housed separately until challenge. Two days following vaccination, all steers were challenged with bovine respiratory syncytial virus and bovine herpes virus 1 and housed in a single pen. Clinical and antibody response outcomes and the presence of nasal pathogens were evaluated. RESULTS: The odds of clinical disease were lower in group A compared with group C on day 7 postchallenge; however, antibody responses and pathogen detection were not significantly different between groups before and following viral challenge. All calves remained negative for Histophilus somni and Mycoplasma bovis; however, significantly greater loads of Mannheimia haemolytica and Pasteurella multocida were detected on day 7 postchallenge compared with day -2 prechallenge. CLINICAL RELEVANCE: Intranasal booster vaccination of beef steers at 6 months of age reduced clinical disease early after viral challenge. Weaning, transport, and viral infection promoted increased detection rates of M haemolytica and P multocida regardless of vaccination status.


Assuntos
Administração Intranasal , Coinfecção , Herpesvirus Bovino 1 , Imunização Secundária , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Bovino , Animais , Bovinos , Herpesvirus Bovino 1/imunologia , Masculino , Administração Intranasal/veterinária , Vírus Sincicial Respiratório Bovino/imunologia , Imunização Secundária/veterinária , Coinfecção/veterinária , Coinfecção/prevenção & controle , Coinfecção/microbiologia , Infecções por Vírus Respiratório Sincicial/veterinária , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Rinotraqueíte Infecciosa Bovina/prevenção & controle , Rinotraqueíte Infecciosa Bovina/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Derrame de Bactérias , Anticorpos Antivirais/sangue , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/prevenção & controle , Distribuição Aleatória , Vacinação/veterinária
12.
Vet Clin North Am Food Anim Pract ; 39(1): 141-155, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731994

RESUMO

Serologic diagnosis is used to identify evidence of infection or vaccination by specific agents, or for population surveillance. The enzyme-linked immunosorbent assay and the serum (virus) neutralizing tests are most used for bovine serologic diagnosis. Although infectious agent-specific antibodies may include immunoglobulin M, immunoglobulin G, and immunoglobulin A, the antibody class is rarely specifically identified in diagnostic laboratory testing. When interpreting the results of serology, consider whether the antibodies are due to an agent that causes life-long infection, transient infection with no history of vaccination, or transient infection with a history of vaccination. Paired serology is necessary to confirm recent infection in cattle with a history of vaccination.


Assuntos
Doenças dos Bovinos , Doenças Transmissíveis , Bovinos , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Doenças Transmissíveis/veterinária , Doenças dos Bovinos/diagnóstico
13.
Sci Rep ; 13(1): 2671, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792613

RESUMO

Each year, bovine respiratory disease (BRD) results in significant economic loss in the cattle sector, and novel metabolic profiling for early diagnosis represents a promising tool for developing effective measures for disease management. Here, 1H-nuclear magnetic resonance (1H-NMR) spectra were used to characterize metabolites from blood plasma collected from male dairy calves (n = 10) intentionally infected with two of the main BRD causal agents, bovine respiratory syncytial virus (BRSV) and Mannheimia haemolytica (MH), to generate a well-defined metabolomic profile under controlled conditions. In response to infection, 46 metabolites (BRSV = 32, MH = 33) changed in concentration compared to the uninfected state. Fuel substrates and products exhibited a particularly strong effect, reflecting imbalances that occur during the immune response. Furthermore, 1H-NMR spectra from samples from the uninfected and infected stages were discriminated with an accuracy, sensitivity, and specificity ≥ 95% using chemometrics to model the changes associated with disease, suggesting that metabolic profiles can be used for further development, understanding, and validation of novel diagnostic tools.


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Transtornos Respiratórios , Infecções por Vírus Respiratório Sincicial , Doenças Respiratórias , Animais , Bovinos , Masculino , Doenças Respiratórias/veterinária , Espectroscopia de Ressonância Magnética , Metabolômica , Plasma , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/veterinária
14.
Vet Clin Pathol ; 52(1): 108-111, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36336840

RESUMO

An approximately 12-year-old female Vietnamese Pot-Bellied Pig was presented to the Mississippi State College of Veterinary Medicine Food Animal Service for anorexia of 2 days duration. On physical examination, the patient appeared depressed and lethargic with significantly pale mucus membranes, open mouth breathing, and nostril flaring. On abdominal palpation, the abdomen was tense and uncomfortable. A complete blood count (CBC) and chemistry profile were performed. The CBC revealed significant anemia and mild leukocytosis characterized by mild neutrophilia with a left shift. Mast cells were rarely observed. Hematocrit = 8.1% (RI 22-50), RBC = 1.25 × 106 /µL (RI 3.6-7.8), WBC = 19.85 × 103 /µL (RI 5.2-17.9), Neutrophils = 15.08 × 103 /µL (RI 0-11.4), and Bands = 0.993 × 103 /µL (RI 0-0.019). The chemistry profile was unremarkable with a mildly elevated BUN and slightly decreased total protein and albumin (BUN = 39 mg/dL [RI 4.2-15.1], total protein = 6.2 g/dL [RI 6.6-8.9], and albumin = 2.5 g/dL [RI 3.6-5.0]). An abdominal ultrasound revealed numerous hypoechoic nodules diffusely scattered throughout the hepatic parenchyma. An FNA of one of the hepatic nodules was performed. A mild suppurative component and numerous variably granulated mast cells were observed. A presumptive cytologic diagnosis of mast cell tumor was made. Histopathology was performed, confirming the cytologic interpretation.


Assuntos
Anemia , Neoplasias Cutâneas , Doenças dos Suínos , Feminino , Animais , Suínos , Mastócitos/patologia , Abdome , Ultrassonografia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/veterinária , Anemia/patologia , Anemia/veterinária
15.
Vet Sci ; 10(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977250

RESUMO

Bovine respiratory disease (BRD) remains the leading disease within the U.S. beef cattle industry. Marketing decisions made prior to backgrounding may shift BRD incidence into a different phase of production, and the importance of host gene expression on BRD incidence as it relates to marketing strategy is poorly understood. Our objective was to compare the influence of marketing on host transcriptomes measured on arrival at a backgrounding facility on the subsequent probability of being treated for BRD during a 45-day backgrounding phase. This study, through RNA-Seq analysis of blood samples collected on arrival, evaluated gene expression differences between cattle which experienced a commercial auction setting (AUCTION) versus cattle directly shipped to backgrounding from the cow-calf phase (DIRECT); further analyses were conducted to determine differentially expressed genes (DEGs) between cattle which remained clinically healthy during backgrounding (HEALTHY) versus those that required treatment for clinical BRD within 45 days of arrival (BRD). A profound difference in DEGs (n = 2961) was identified between AUCTION cattle compared to DIRECT cattle, regardless of BRD development; these DEGs encoded for proteins involved in antiviral defense (increased in AUCTION), cell growth regulation (decreased in AUCTION), and inflammatory mediation (decreased in AUCTION). Nine and four DEGs were identified between BRD and HEALTHY cohorts in the AUCTION and DIRECT groups, respectively; DEGs between disease cohorts in the AUCTION group encoded for proteins involved in collagen synthesis and platelet aggregation (increased in HEALTHY). Our work demonstrates the clear influence marketing has on host expression and identified genes and mechanisms which may predict BRD risk.

16.
Am J Vet Res ; 84(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558231

RESUMO

OBJECTIVE: Evaluate agreement among the antimicrobial susceptibility profiles of Mannheimia haemolytica or Pasteurella multocida obtained by transtracheal wash, nasal swab, nasopharyngeal swab, and bronchoalveolar lavage. ANIMALS: 100 Holstein and Holstein-cross bull calves with bovine respiratory disease. METHODS: Calves > 30 days old with naturally occurring bovine respiratory disease were sampled sequentially by nasal swab, nasopharyngeal swab, transtracheal wash, and then bronchoalveolar lavage. Samples were cultured, and for each antimicrobial, the MIC of 50% and 90% of isolates was calculated, and isolates were categorized as susceptible or not. Categorical discrepancies were recorded. Percent positive agreement and kappa values were calculated between isolates for each of the sampling methods. RESULTS: Antimicrobial susceptibility varied by pathogen and resistance to enrofloxacin, florfenicol, tilmicosin, and spectinomycin was detected. Minor discrepancies were seen in up to 29% of classifications, with enrofloxacin, penicillin, and florfenicol more frequently represented than other drugs. Very major and major discrepancies were seen when comparing florfenicol (1.9%) and tulathromycin (3.8 to 4.9%) across sampling methods. Some variability was seen in agreement for enrofloxacin for several comparisons (8.3 to 18.4%). CLINICAL RELEVANCE: Susceptibility testing of isolates from 1 location of the respiratory tract can reliably represent susceptibility in other locations. Nevertheless, the potential for imperfect agreement between sampling methods does exist. The level of restraint available, the skill level of the person performing the sampling, the age and size of the animal, disease status, and treatment history all must be factored into which test is most appropriate for a given situation.


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Pasteurella multocida , Doenças Respiratórias , Humanos , Bovinos , Animais , Masculino , Enrofloxacina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Doenças Respiratórias/veterinária , Testes de Sensibilidade Microbiana/veterinária
17.
Animals (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174567

RESUMO

Mannheimia haemolytica is one of the major causes of bovine respiratory disease in cattle. The organism is the primary bacterium isolated from calves and young cattle affected with enzootic pneumonia. Novel indirect ELISAs were developed and evaluated to enable quantification of antibody responses to whole cell antigens using M. haemolytica A1 strain P1148. In this study, the ELISAs were initially developed using sera from both M. haemolytica-culture-free and clinically infected cattle, then the final prototypes were tested in the validation phase using a larger set of known-status M. haemolytica sera (n = 145) collected from feedlot cattle. The test showed good inter-assay and intra-assay repeatability. Diagnostic sensitivity and specificity were estimated at 91% and 87% for IgG at a cutoff of S/P ≥ 0.8. IgM diagnostic sensitivity and specificity were 91% and 81% at a cutoff of sample to positive (S/P) ratio ≥ 0.8. IgA diagnostic sensitivity was 89% whereas specificity was 78% at a cutoff of S/P ≥ 0.2. ELISA results of all isotypes were related to the diagnosis of respiratory disease and isolation of M. haemolytica (p-value < 0.05). These data suggest that M. haemolytica ELISAs can be adapted to the detection and quantification of antibody in serum specimens and support the use of these tests for the disease surveillance and disease prevention research in feedlot cattle.

18.
Front Vet Sci ; 10: 1256997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053814

RESUMO

Bovine respiratory disease (BRD) is a leading cause of disease in feedlot and stocker calves with Mannheimia haemolytica (MH) as one of the most common etiologies. One of the most effective means of controlling BRD is through metaphylaxis, which involves administering antimicrobials to all animals at high risk of developing BRD. However, increasing prevalence of multidrug resistant (MDR) MH may reduce efficacy of metaphylaxis due to decreased susceptibility to drugs used for metaphylaxis. Primarily, this study aimed to determine the effect of tulathromycin metaphylaxis and subsequent BRD treatment on antimicrobial resistance (AMR) in MH isolated from stocker calves. Secondary objectives included evaluating the effect of metaphylaxis and treatment for BRD on animal health and comparing the genetic relationship of MH isolated. Crossbred beef heifers (n = 331, mean weight = 232, SD = 17.8 kg) at high risk for BRD were randomly assigned to receive tulathromycin metaphylaxis (META, n = 167) or not (NO META, n = 164). Nasopharyngeal swabs were collected for MH isolation, antimicrobial susceptibility testing and whole genome sequencing at arrival and 3 (WK3) and 10 (WK10) weeks later. Mixed-effects logistic regression was used to identify risk factors for isolation of MH and MDR MH (resistant to ≥3 antimicrobial drug classes) at 3 and 10 weeks, BRD morbidity, and crude mortality. Animals in the META group had higher odds of isolation of MDR MH at 3 weeks [OR (95% CI) = 13.08 (5-30.9), p < 0.0001] and 10 weeks [OR (95% CI) = 5.92 (1.34-26.14), p = 0.019] after arrival. There was no difference in risk of isolation of any MH (resistant or susceptible) between META and NO META groups at all timepoints. Animals in the NO META group had 3 times higher odds of being treated for BRD [WK3: OR (95% CI) = 3.07 (1.70-5.52), p = 0.0002; WK10: OR (95% CI) = 2.76 (1.59-4.80), p = 0.0002]. Antimicrobial resistance genes found within isolates were associated with integrative conjugative element (ICE) genes. Tulathromycin metaphylaxis increased risk of isolation of MDR MH and in this population, the increase in MDR MH appeared to be associated with ICE containing antimicrobial resistance genes for multiple antimicrobial classes. This may have important implications for future efficacy of antimicrobials for control and treatment of BRD.

19.
Vet Clin North Am Food Anim Pract ; 38(2): 219-227, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35691625

RESUMO

Throughout history, theories of disease etiology have evolved. These theories of disease etiology, which can also be considered mental models of disease, have been based on associations drawn from careful observation of diseased and healthy individuals. Mental models of disease, even when incorrect, have frequently reflected real associations between proposed exposures and disease even when the exposures eventually were disproved as causal. The same patterns can be observed in mental models of disease in cattle. Throughout time, mental models for common bovine diseases have been improved to better reflect how disease actually occurs. It is important to recognize that inconsistencies still exist between observation of actual disease and our understanding of disease etiology. These inconsistencies can be viewed as opportunities for further discovery to improve our understanding of disease. Future progress in controlling bovine diseases depends on converting these opportunities into better mental models of disease.


Assuntos
Doenças dos Bovinos , Animais , Bovinos , Modelos Psicológicos
20.
Front Vet Sci ; 9: 1010039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225796

RESUMO

The impact of preweaning vaccination for bovine respiratory viruses on cattle health and subsequent bovine respiratory disease morbidity has been widely studied yet questions remain regarding the impact of these vaccines on host response and gene expression. Six randomly selected calves were vaccinated twice preweaning (T1 and T3) with a modified live vaccine for respiratory pathogens and 6 randomly selected calves were left unvaccinated. Whole blood samples were taken at first vaccination (T1), seven days later (T2), at revaccination and castration (T3), and at weaning (T4), and utilized for RNA isolation and sequencing. Serum from T3 and T4 was analyzed for antibodies to BRSV, BVDV1a, and BHV1. Sequenced RNA for all 48 samples was bioinformatically processed with a HISAT2/StringTie pipeline, utilizing reference guided assembly with the ARS-UCD1.2 bovine genome. Differentially expressed genes were identified through analyzing the impact of time across all calves, influence of vaccination across treatment groups at each timepoint, and the interaction of time and vaccination. Calves, regardless of vaccine administration, demonstrated an increase in gene expression over time related to specialized proresolving mediator production, lipid metabolism, and stimulation of immunoregulatory T-cells. Vaccination was associated with gene expression related to natural killer cell activity and helper T-cell differentiation, enriching for an upregulation in Th17-related gene expression, and downregulated genes involved in complement system activity and coagulation mechanisms. Type-1 interferon production was unaffected by the influence of vaccination nor time. To our knowledge, this is the first study to evaluate mechanisms of vaccination and development in healthy calves through RNA sequencing analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA