Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Psychosom Med ; 84(2): 159-169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34654024

RESUMO

OBJECTIVE: Emerging evidence points toward a connection between mental health and the gut microbiota and its metabolites (e.g., short-chain fatty acids). It is unknown whether the gut microbiota is associated with the development of mental health problems (e.g., internalizing or externalizing behaviors) in preschool children. The objective of this study was to evaluate associations between the gut microbiota and internalizing and externalizing behaviors in preschool-aged children. METHODS: A community sample of 248 typically developing children (3-5 years of age) provided a stool sample for gut microbiota and SCFA analysis. Parents reported child internalizing and externalizing behaviors using the Child Behavior Checklist. Associations between child behaviors and gut microbiota measures were analyzed using Spearman correlations followed by an adjustment for multiple testing, with subanalysis conducted in children clinically "at risk" for behavioral problems compared with those who were not. RESULTS: There was a correlation between Shannon alpha diversity with internalizing behaviors (rs = -0.134, p = .035) and its subscale somatic complaints (rs = -0.144, p = .023). In addition, children clinically "at risk" for internalizing problems had decreased alpha diversity (U = 551, p = .017). Internalizing behaviors correlated with valerate and isobutyrate (rs = -0.147, p = .021; rs = -0.140, p = .028, respectively). Furthermore the somatic complaints subscale additionally correlated with acetate and butyrate (rs = -0.219, p = .001; rs = -0.241, p < .001, respectively). These findings were also present in children "at risk" for internalizing problems (U = 569, p = .026; U = 571, p = .028) and somatic complaints (U = 164, p = .004; U = 145, p = .001). CONCLUSIONS: These analyses reveal novel associations between internalizing behaviors and the gut microbiota in preschool children. Furthermore, a relationship between somatic complaints and acetate and butyrate was identified, indicating that interventions that increase SCFA production warrant future investigation.


Assuntos
Microbioma Gastrointestinal , Comportamento Problema , Criança , Comportamento Infantil , Pré-Escolar , Ácidos Graxos Voláteis , Humanos , Pais
2.
Dev Biol ; 453(1): 34-47, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199900

RESUMO

Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrß positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.


Assuntos
Diferenciação Celular , Embrião não Mamífero/citologia , Fatores de Transcrição Forkhead/metabolismo , Cabeça/irrigação sanguínea , Cabeça/embriologia , Músculo Liso Vascular/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular/genética , Embrião não Mamífero/metabolismo , Endotélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , Transcriptoma/genética , Regulação para Cima , Peixe-Zebra/genética
3.
FASEB J ; 33(6): 6748-6766, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30821497

RESUMO

Metabolic syndrome encompasses obesity, glucose intolerance, hypertension, and dyslipidemia; however, the interactions between diet and host physiology that predispose to metabolic syndrome are incompletely understood. Here, we explored the effects of a high-fat diet (HFD) on energy balance, gut microbiota, and risk factors of metabolic syndrome in spontaneously hypertensive stroke-prone (SHRSP) and Wistar-Kyoto (WKY) rats. We found that the SHRSP rats were hypertensive, hyperphagic, less sensitive to hypophagic effects of exendin-4, and expended more energy with diminished sensitivity to sympathetic blockade compared to WKY rats. Notably, key thermogenic markers in brown and retroperitoneal adipose tissues and skeletal muscle were up-regulated in SHRSP than WKY rats. Although HFD promoted weight gain, adiposity, glucose intolerance, hypertriglyceridemia, hepatic lipidosis, and hyperleptinemia in both SHRSP and WKY rats, the SHRSP rats weighed less but had comparable percent adiposity to WKY rats, which supports the use of HFD-fed SHRSP rats as a unique model for studying the metabolically obese normal weight (MONW) phenotype in humans. Despite distinct strain differences in gut microbiota composition, diet had a preponderant impact on gut flora with some of the taxa being strongly associated with key metabolic parameters. Together, we provide evidence that interactions between host genetics and diet modulate gut microbiota and predispose SHRSP rats to develop metabolic syndrome.-Singh, A., Zapata, R. C., Pezeshki, A., Workentine, M. L., Chelikani, P. K. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Predisposição Genética para Doença , Intolerância à Glucose/etiologia , Hipertensão/complicações , Síndrome Metabólica/etiologia , Acidente Vascular Cerebral/complicações , Animais , Biomarcadores , Intolerância à Glucose/patologia , Hipertensão/fisiopatologia , Masculino , Síndrome Metabólica/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/fisiopatologia
4.
FASEB J ; 33(4): 5676-5689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30668930

RESUMO

Macrophages play central roles in immunity as early effectors and modulating adaptive immune reponses; we implicated macrophages in the anticolitic effect of infection with the tapeworm Hymenolepis diminuta. Here, gene arrays revealed that H. diminuta antigen (HdAg) evoked a program in murine macrophages distinct from that elicited by IL-4. Further, HdAg suppressed LPS-evoked release of TNF-α and IL-1ß from macrophages via autocrine IL-10 signaling. In assessing the ability of macrophages treated in vitro with an extract of H. diminuta [M(HdAg)] to affect disease, intravenous, but not peritoneal, injection of M(HdAg) protected wild-type but not RAG1-/- mice from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Administration of splenic CD4+ T cells from in vitro cocultures with M(HdAg), but not those cocultured with M(IL-4) cells, inhibited DNBS-induced colitis; fractionation of the T-cell population indicated that the CD4+CD25+ T cells from cocultures with M(HdAg) drove the suppression of DNBS-induced colitis. Use of IL-4-/- or IL-10-/- CD4+ T cells revealed that neither cytokine alone from the donor cells was essential for the anticolitic effect. These data illustrate that HdAg evokes a unique regulatory program in macrophages, identifies HdAg-evoked IL-10 suppression of macrophage activation, and reveals the ability of HdAg-treated macrophages to educate ( i.e., condition) and mobilize CD4+CD25+ T cells, which could be deployed to treat colonic inflammation.-Reyes, J. L., Lopes, F., Leung, G., Jayme, T. S., Matisz, C. E., Shute, A., Burkhard, R., Carneiro, M., Workentine, M. L., Wang, A., Petri, B., Beck, P. L., Geuking, M. B., McKay, D. M., Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25+ T cells to suppress colitis.


Assuntos
Antígenos de Helmintos/imunologia , Linfócitos T CD4-Positivos/imunologia , Cestoides/imunologia , Colite/imunologia , Hymenolepis diminuta/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Macrófagos/imunologia , Animais , Colite/parasitologia , Colo/imunologia , Colo/parasitologia , Citocinas/imunologia , Humanos , Interleucina-10/imunologia , Interleucina-4/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
5.
BMC Genet ; 21(1): 74, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650716

RESUMO

BACKGROUND: Marker gene surveys have a wide variety of applications in species identification, population genetics, and molecular epidemiology. As these methods expand to new types of organisms and additional markers beyond 16S and 18S rRNA genes, comprehensive databases are a critical requirement for proper analysis of these data. RESULTS: Here we present an ITS2 rDNA database for marker gene surveys of both free-living and parasitic nematode populations and the software used to build the database. This is currently the most complete and up-to-date ITS2 database for nematodes and is able to reproduce previous analysis that used a smaller database. CONCLUSIONS: This database is an important resource for researchers working on nematodes and also provides a tool to create ITS2 databases for any given taxonomy.


Assuntos
DNA Espaçador Ribossômico/genética , Bases de Dados Genéticas , Nematoides/genética , Animais , Biologia Computacional , Marcadores Genéticos , Software
6.
Thorax ; 73(11): 1016-1025, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30135091

RESUMO

BACKGROUND: Complex polymicrobial communities infect cystic fibrosis (CF) lower airways. Generally, communities with low diversity, dominated by classical CF pathogens, associate with worsened patient status at sample collection. However, it is not known if the microbiome can predict future outcomes. We sought to determine if the microbiome could be adapted as a biomarker for patient prognostication. METHODS: We retrospectively assessed prospectively collected sputum from a cohort of 104 individuals aged 18-22 to determine factors associated with progression to early end-stage lung disease (eESLD; death/transplantation <25 years) and rapid pulmonary function decline (>-3%/year FEV1 over the ensuing 5 years). Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S rRNA was used to define the airway microbiome. RESULTS: Based on the primary outcome analysed, 17 individuals (16%) subsequently progressed to eESLD. They were more likely to have sputum with low alpha diversity, dominated by specific pathogens including Pseudomonas. Communities with abundant Streptococcus were observed to be protective. Microbial communities clustered together by baseline lung disease stage and subsequent progression to eESLD. Multivariable analysis identified baseline lung function and alpha diversity as independent predictors of eESLD. For the secondary outcomes, 58 and 47 patients were classified as rapid progressors based on absolute and relative definitions of lung function decline, respectively. Patients with low alpha diversity were similarly more likely to be classified as experiencing rapid lung function decline over the ensuing 5 years when adjusted for baseline lung function. CONCLUSIONS: We observed that the diversity of microbial communities in CF airways is predictive of progression to eESLD and disproportionate lung function decline and may therefore represent a novel biomarker.


Assuntos
Fibrose Cística/complicações , Microbiota , Infecções Respiratórias/microbiologia , Escarro/microbiologia , Adolescente , Fibrose Cística/microbiologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Infecções Respiratórias/complicações , Infecções Respiratórias/diagnóstico , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
7.
BMC Genomics ; 17: 461, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301771

RESUMO

BACKGROUND: Knowledge about how bacterial populations are structured is an important prerequisite for studying their ecology and evolutionary history and facilitates inquiry into host specificity, pathogenicity, geographic dispersal and molecular epidemiology. Erysipelothrix rhusiopathiae is an opportunistic pathogen that is currently reemerging in both the swine and poultry industries globally. This bacterium sporadically causes mortalities in captive marine mammals, and has recently been implicated in large-scale wildlife die-offs. However, despite its economic relevance and broad geographic and host distribution, including zoonotic potential, the global diversity, recombination rates, and population structure of this bacterium remain poorly characterized. In this study, we conducted a broad-scale genomic comparison of E. rhusiopathiae based on a diverse collection of isolates in order to address these knowledge gaps. RESULTS: Eighty-three E. rhusiopathiae isolates from a range of host species and geographic origins, isolated between 1958 and 2014, were sequenced and assembled using both reference-based mapping and de novo assembly. We found that a high proportion of the core genome (58 %) had undergone recombination. Therefore, we used three independent methods robust to the presence of recombination to define the population structure of this species: a phylogenetic tree based on a set of conserved protein sequences, in silico chromosome painting, and network analysis. All three methods were broadly concordant and supported the existence of three distinct clades within the species E. rhusiopathiae. Although we found some evidence of host and geographical clustering, each clade included isolates from diverse host species and from multiple continents. CONCLUSIONS: Using whole genome sequence data, we confirm recent suggestions that E. rhusiopathiae is a weakly clonal species that has been shaped extensively by homologous recombination. Despite frequent recombination, we can reliably identify three distinct clades that do not clearly segregate by host species or geographic origin. Our results provide an essential baseline for future molecular epidemiological, ecological and evolutionary studies of E. rhusiopathiae and facilitate comparisons to other recombinogenic, multi-host bacteria.


Assuntos
Erysipelothrix/classificação , Erysipelothrix/genética , Genoma Bacteriano , Genômica , Recombinação Genética , Animais , Bacteriófagos/fisiologia , Análise por Conglomerados , Erysipelothrix/virologia , Genética Populacional , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Filogenia , Plasmídeos/genética , Suínos
8.
J Clin Microbiol ; 52(4): 1127-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452167

RESUMO

Transmissible strains of Pseudomonas aeruginosa have been described for cystic fibrosis (CF) and may be associated with a worse prognosis. Using a comprehensive strain biobank spanning 3 decades, we sought to determine the prevalence and stability of chronic P. aeruginosa infection in an adult population. P. aeruginosa isolates from sputum samples collected at initial enrollment in our adult clinic and at the most recent clinic visit were examined by a combination of pulsed-field gel electrophoresis and multilocus sequence typing and compared against a collection of established transmissible and local non-CF bronchiectasis (nCFB) isolates. A total of 372 isolates from 107 patients, spanning 674 patient-years, including 66 patients with matched isolates from initial and final encounters, were screened. A novel clone with increased antibacterial resistance, termed the prairie epidemic strain (PES), was found in 29% (31/107 patients) of chronically infected patients referred from multiple prairie-based CF centers. This isolate was not found in those diagnosed with CF as adults or in a control population with nCFB. While 90% (60/66 patients) of patients had stable infection over a mean of 10.8 years, five patients experienced strain displacement of unique isolates, with PES occurring within 2 years of transitioning to adult care. PES has been present in our cohort since at least 1987, is unique to CF, generally establishes chronic infection during childhood, and has been found in patients at the time of transition of patients from multiple prairie-based CF clinics, suggesting broad endemicity. Studies are under way to evaluate the clinical implications of PES infection.


Assuntos
Fibrose Cística/complicações , Epidemias , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Adulto , Análise por Conglomerados , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Genótipo , Humanos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Pseudomonas aeruginosa/isolamento & purificação
9.
Microbiome ; 12(1): 60, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515179

RESUMO

BACKGROUND: The gut microbiota is recognized as a regulator of brain development and behavioral outcomes during childhood. Nonetheless, associations between the gut microbiota and behavior are often inconsistent among studies in humans, perhaps because many host-microbe relationships vary widely between individuals. This study aims to stratify children based on their gut microbiota composition (i.e., clusters) and to identify novel gut microbiome cluster-specific associations between the stool metabolomic pathways and child behavioral outcomes. METHODS: Stool samples were collected from a community sample of 248 typically developing children (3-5 years). The gut microbiota was analyzed using 16S sequencing while LC-MS/MS was used for untargeted metabolomics. Parent-reported behavioral outcomes (i.e., Adaptive Skills, Internalizing, Externalizing, Behavioral Symptoms, Developmental Social Disorders) were assessed using the Behavior Assessment System for Children (BASC-2). Children were grouped based on their gut microbiota composition using the Dirichlet multinomial method, after which differences in the metabolome and behavioral outcomes were investigated. RESULTS: Four different gut microbiota clusters were identified, where the cluster enriched in both Bacteroides and Bifidobacterium (Ba2) had the most distinct stool metabolome. The cluster characterized by high Bifidobacterium abundance (Bif), as well as cluster Ba2, were associated with lower Adaptive Skill scores and its subcomponent Social Skills. Cluster Ba2 also had significantly lower stool histidine to urocanate turnover, which in turn was associated with lower Social Skill scores in a cluster-dependent manner. Finally, cluster Ba2 had increased levels of compounds involved in Galactose metabolism (i.e., stachyose, raffinose, alpha-D-glucose), where alpha-D-glucose was associated with the Adaptive Skill subcomponent Daily Living scores (i.e., ability to perform basic everyday tasks) in a cluster-dependent manner. CONCLUSIONS: These data show novel associations between the gut microbiota, its metabolites, and behavioral outcomes in typically developing preschool-aged children. Our results support the concept that cluster-based groupings could be used to develop more personalized interventions to support child behavioral outcomes. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Pré-Escolar , Humanos , Bifidobacterium/genética , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Glucose , Metaboloma , Metabolômica/métodos , RNA Ribossômico 16S , Espectrometria de Massas em Tandem
10.
BMC Microbiol ; 13: 175, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23890016

RESUMO

BACKGROUND: The emergence of colony morphology variants in structured environments is being recognized as important to both niche specialization and stress tolerance. Pseudomonas fluorescens demonstrates diversity in both its natural environment, the rhizosphere, and in laboratory grown biofilms. Sub-populations of these variants within a biofilm have been suggested as important contributors to antimicrobial stress tolerance given their altered susceptibility to various agents. As such it is of interest to determine how these variants might be distributed in the biofilm environment. RESULTS: Here we present an analysis of the spatial distribution of Pseudomonas fluorescens colony morphology variants in mixed-culture biofilms with the wildtype phenotype. These findings reveal that two variant colony morphotypes demonstrate a significant growth advantage over the wildtype morphotype in the biofilm environment. The two variant morphotypes out-grew the wildtype across the entire biofilm and this occurred within 24 h and was maintained through to 96 h. This competitive advantage was not observed in homogeneous broth culture. CONCLUSIONS: The significant advantage that the variants demonstrate in biofilm colonization over the wildtype denotes the importance of this phenotype in structured environments.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pseudomonas fluorescens/fisiologia , Variação Genética , Humanos , Interações Microbianas , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/isolamento & purificação , Fatores de Tempo
11.
Infect Genet Evol ; 109: 105414, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775047

RESUMO

In 2016, the first orf virus, a double-stranded DNA (dsDNA) virus of the genus parapoxvirus, from a muskox was isolated on Victoria Island, Nunavut (NU), Canada. We used deep sequencing on DNA extracted from orf virus-positive tissues from wild muskoxen from locations on Victoria Island and the adjacent mainland. Orf virus sequence reads derived from four samples were nearly identical. The consensus sequences generated from pooled reads of MxOV comprises of a large contiguous sequence (contig) of 131,759 bp and a smaller right terminal contig of 3552 bp, containing all coding sequences identified as Parapoxvirus. Individual gene comparisons reveal that MxOV shares genetic characteristics with reference strains from both sheep and goat origin. Recombination analysis using Bootscan, MAXCHI, GENECONV, CHIMAERA, SISCAN, and RDP algorithms within the RDP4 software predicted recombination events in two virulence factors, and a large 3000 bp segment of the MxOV genome. Partial B2L nucleotide sequences from strains around the world and other North American isolates were compared to MxOV using MUSCLE alignments and RAxML phylogenetic trees. MxOV was identical to our previously characterized isolate, and shared similarity with orf virus isolated from sheep and goats. The phylogenetic grouping of partial B2L nucleotide sequences did not follow the sample geographic distribution. More full genomes of orf virus, or at least full B2L gene squences, in wildlife are needed especially in North America to better understand the epidemiology of the disease in muskoxen.


Assuntos
Doenças Transmissíveis , Vírus do Orf , Ovinos , Animais , Filogenia , Canadá/epidemiologia , Ruminantes , Vírus do Orf/genética , Cabras , Sequenciamento de Nucleotídeos em Larga Escala
12.
Neurosci Lett ; 810: 137357, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37355156

RESUMO

The relationship between the gut microbiota and neurocognitive outcomes is becoming increasingly recognized; however, findings in humans are inconsistent. In addition, few studies have investigated the gut microbial metabolites that may mediate this relationship. The objective of this study was to investigate associations between full-scale intelligence (FSIQ) and the composition of the gut microbiota and metabolome in preschool children. Stool samples were collected from a community sample of 245 typically developing children (3-5 years) from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. The faecal microbiome was assessed using 16S rRNA sequencing and the metabolome using LC-MS/MS. FSIQ and scores on the Verbal Comprehension, Visual Spatial, Working Memory indices of the Wechsler Preschool and Primary Scale of Intelligence-IV were used to assess neurocognition. Associations between the gut microbiota and FSIQ were determined using Pearson and Spearman correlations, which were corrected for multiple testing and relevant covariates. Verbal Comprehension correlated negatively with both Shannon alpha diversity (r = -0.14, p = 0.032) and the caffeine-derived metabolite paraxanthine (r = -0.22, p < 0.001). No other significant correlations were observed. Overall, the weak to modest correlations between Verbal Comprehension with alpha diversity and paraxanthine provide limited evidence of an association between the gut microbiota and neurocognitive outcomes in typically developing preschool children.


Assuntos
Microbioma Gastrointestinal , Humanos , Pré-Escolar , RNA Ribossômico 16S , Cromatografia Líquida , Espectrometria de Massas em Tandem , Inteligência
13.
Int J Parasitol ; 52(10): 677-689, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36113620

RESUMO

Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 ß-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 ß-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 ß-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Ovinos , Animais , Haemonchus/genética , Tubulina (Proteína)/genética , Resistência a Medicamentos/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Genômica , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Hemoncose/parasitologia
14.
J Proteome Res ; 10(7): 3190-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21561166

RESUMO

Bacterial biofilms are known to withstand the effects of toxic metals better than planktonic cultures of the same species. This phenomenon has been attributed to many features of the sessile lifestyle not present in free-swimming populations, but the contribution of intracellular metabolism has not been previously examined. Here, we use a combined GC-MS and (1)H NMR metabolomic approach to quantify whole-cell metabolism in biofilm and planktonic cultures of the multimetal resistant bacterium Pseudomonas fluorescens exposed to copper ions. Metabolic changes in response to metal exposure were found to be significantly different in biofilms compared to planktonic cultures. Planktonic metabolism indicated an oxidative stress response that was characterized by changes to the TCA cycle, glycolysis, pyruvate and nicotinate and niacotinamide metabolism. Similar metabolic changes were not observed in biofilms, which were instead dominated by shifts in exopolysaccharide related metabolism suggesting that metal stress in biofilms induces a protective response rather than the reactive changes observed for the planktonic cells. From these results, we conclude that differential metabolic shifts play a role in biofilm-specific multimetal resistance and tolerance. An altered metabolic response to metal toxicity represents a novel addition to a growing list of biofilm-specific mechanisms to resist environmental stress.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metaboloma , Metabolômica/métodos , Plâncton/metabolismo , Pseudomonas fluorescens , Biofilmes/efeitos dos fármacos , Cromatografia Gasosa , Cobre/farmacologia , Farmacorresistência Bacteriana , Ecotoxicologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Plâncton/efeitos dos fármacos , Análise de Componente Principal , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo
15.
Sci Rep ; 11(1): 14319, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253764

RESUMO

Microglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Animais , Sequência de Bases , Feminino , Imunofluorescência , Camundongos , Microglia , RNA Mensageiro/metabolismo , Transmissão Sináptica/fisiologia , Transcriptoma/genética
16.
Int J Parasitol ; 51(2-3): 183-192, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242465

RESUMO

Horses are ubiquitously infected by a diversity of gastro-intestinal parasitic helminths. Of particular importance are nematodes of the family Strongylidae, which can significantly impact horse health and performance. However, knowledge about equine strongyles remains limited due to our inability to identify most species non-invasively using traditional morphological techniques. We developed a new internal transcribed spacer 2 (ITS2) DNA metabarcoding 'nemabiome' assay to characterise mixed strongyle infections in horses and assessed its performance by applying it to pools of infective larvae from fecal samples from an experimental herd in Kentucky, USA and two feral horse populations from Sable Island and Alberta, Canada. In addition to reporting the detection of 33 different species with high confidence, we illustrate the assay's repeatability by comparing results generated from aliquots from the same fecal samples and from individual horses sampled repeatedly over multiple days or months. We also validate the quantitative potential of the assay by demonstrating that the proportion of amplicon reads assigned to different species scales linearly with the number of larvae present. This new tool significantly improves equine strongyle diagnostics, presenting opportunities for research on species-specific anthelmintic resistance and the causes and consequences of variation in mixed infections.


Assuntos
Anti-Helmínticos , Coinfecção , Doenças dos Cavalos , Infecções Equinas por Strongyloidea , Alberta , Animais , Anti-Helmínticos/uso terapêutico , Código de Barras de DNA Taxonômico , Fezes , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/tratamento farmacológico , Cavalos , Contagem de Ovos de Parasitas/veterinária , Infecções Equinas por Strongyloidea/diagnóstico
17.
Cell Mol Gastroenterol Hepatol ; 11(2): 551-571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32992049

RESUMO

BACKGROUND & AIMS: Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function. METHODS: Monolayers of human colon-derived epithelial cell lines were exposed to E coli-LF82 or commensal E coli and RNA sequence analysis, mitochondrial function (adenosine triphosphate synthesis) and dynamics (mitochondrial network imaging, immunoblotting for fission and fusion proteins), and epithelial permeability (transepithelial resistance, flux of fluorescein isothiocyanate-dextran and bacteria) were assessed. RESULTS: E coli-LF82 significantly affected epithelial expression of ∼8600 genes, many relating to mitochondrial function. E coli-LF82-infected epithelia showed swollen mitochondria, reduced mitochondrial membrane potential and adenosine triphosphate, and fragmentation of the mitochondrial network: events not observed with dead E coli-LF82, medium from bacterial cultures, or control E coli. Treatment with Mitochondrial Division Inhibitor 1 (Mdivi1, inhibits dynamin-related peptide 1, guanosine triphosphatase principally responsible for mitochondrial fission) or P110 (prevents dynamin-related peptide 1 binding to mitochondrial fission 1 protein) partially reduced E coli-LF82-induced mitochondrial fragmentation in the short term. E coli-LF82-infected epithelia showed loss of the long isoform of optic atrophy factor 1, which mediates mitochondrial fusion. Mitochondrial Division Inhibitor 1 reduced the magnitude of E coli-LF82-induced increased transepithelial flux of fluorescein isothiocyanate dextran. By 8 hours after infection, increased cytosolic cytochrome C and DNA fragmentation were apparent without evidence of caspase-3 or apoptosis inducing factor activation. CONCLUSIONS: Epithelial mitochondrial fragmentation caused by E coli-LF82 could be targeted to maintain cellular homeostasis and mitigate infection-induced loss of epithelial barrier function. Data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession numbers GSE154121 and GSE154122 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154121).


Assuntos
Colo/patologia , Doença de Crohn/microbiologia , Escherichia coli/patogenicidade , Mucosa Intestinal/patologia , Mitocôndrias/patologia , Aderência Bacteriana/genética , Linhagem Celular Tumoral , Colo/citologia , Doença de Crohn/patologia , Dinaminas/genética , Dinaminas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Humanos , Mucosa Intestinal/citologia , Dinâmica Mitocondrial/genética , Permeabilidade
18.
PLoS Negl Trop Dis ; 15(9): e0009777, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570778

RESUMO

BACKGROUND: The treatment coverage of control programs providing benzimidazole (BZ) drugs to eliminate the morbidity caused by soil-transmitted helminths (STHs) is unprecedently high. This high drug pressure may result in the development of BZ resistance in STHs and so there is an urgent need for surveillance systems detecting molecular markers associated with BZ resistance. A critical prerequisite to develop such systems is an understanding of the gene family encoding ß-tubulin proteins, the principal targets of BZ drugs. METHODOLOGY AND PRINCIPAL FINDINGS: First, the ß-tubulin gene families of Ascaris lumbricoides and Ascaris suum were characterized through the analysis of published genomes. Second, RNA-seq and RT-PCR analyses on cDNA were applied to determine the transcription profiles of the different gene family members. The results revealed that Ascaris species have at least seven different ß-tubulin genes of which two are highly expressed during the entire lifecycle. Third, deep amplicon sequencing was performed on these two genes in more than 200 adult A. lumbricoides (Ethiopia and Tanzania) and A. suum (Belgium) worms, to investigate the intra- and inter-species genetic diversity and the presence of single nucleotide polymorphisms (SNPs) that are associated with BZ resistance in other helminth species; F167Y (TTC>TAC or TTT>TAT), E198A (GAA>GCA or GAG>GCG), E198L (GAA>TTA) and F200Y (TTC>TAC or TTT>TAT). These particular SNPs were absent in the two investigated genes in all three Ascaris populations. SIGNIFICANCE: This study demonstrated the presence of at least seven ß-tubulin genes in Ascaris worms. A new nomenclature was proposed and prioritization of genes for future BZ resistance research was discussed. This is the first comprehensive description of the ß-tubulin gene family in Ascaris and provides a framework to investigate the prevalence and potential role of ß-tubulin sequence polymorphisms in BZ resistance in a more systematic manner than previously possible.


Assuntos
Ascaríase/parasitologia , Ascaris lumbricoides/efeitos dos fármacos , Ascaris suum/efeitos dos fármacos , Benzimidazóis/farmacologia , Resistência a Medicamentos/genética , Tubulina (Proteína)/metabolismo , Animais , Anti-Helmínticos/farmacologia , Ascaris lumbricoides/genética , Ascaris suum/genética , Humanos , Tubulina (Proteína)/genética
19.
Environ Microbiol ; 12(6): 1565-77, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20236162

RESUMO

Colony morphology variants isolated from natural and laboratory-grown biofilms represent subpopulations of biofilm cells that may be important for multiple aspects of the sessile lifestyle, from surface colonization to stress resistance. There are many genetic and environmental factors that determine the frequency at which colony morphology variants are recovered from biofilms. One of these factors involves an increased selection for variants in biofilms of Pseudomonas species bearing inactivating mutations in the global activator of cyanide biosynthesis/regulator of secondary metabolism (gac/rsm) signal transduction pathway. Here we characterize two distinct colony morphology variants isolated from biofilms of Pseudomonas fluorescens missing the gacS sensor kinase. These variants produced more biofilm cell mass, and in one case, this was likely due to overproduction of the exopolysaccharide cellulose. Nuclear magnetic resonance (NMR) metabolomics revealed distinct metabolic changes for each of the two phenotypic variants, and these changes involved amino acids and metabolites produced through glutathione biochemistry. Some of these metabolites are hypothesized to play a role in redox and metal homeostasis, and corresponding to this, we show that biofilm populations grown from each of these variants had a different ability to survive when exposed to toxic doses of metal ions. These data suggest that colony morphology variants that evolve during growth of P. fluorescens as a biofilm may have distinct metabolic capacities that contribute to their individual abilities to withstand environmental stress.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metaboloma , Pseudomonas fluorescens/citologia , Pseudomonas fluorescens/fisiologia , Análise dos Mínimos Quadrados , Metais/toxicidade , Mutação , Ressonância Magnética Nuclear Biomolecular/métodos , Fenótipo , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-32426295

RESUMO

Pseudomonas aeruginosa is the archetypal cystic fibrosis (CF) pathogen. However, the clinical course experienced by infected individuals varies markedly. Understanding these differences is imperative if further improvements in outcomes are to be achieved. Multiple studies have found that patients infected with epidemic P. aeruginosa (ePA) strains may have a worse clinical prognosis than those infected with unique, non-clonal strains. Additionally, the traditionally uncultured CF lung bacterial community (i.e., CF microbiome) may further influence the outcome. We sought to identify if these two important variables, not identified through routine culture, associate and together may contribute to disease pathogenesis. Patients were classified as being infected with Prairie Epidemic ePA (PES) or a non-clonal strain, unique PA strains (uPA), through a retrospective assessment of a comprehensive strain biobank using a combination of PFGE and PES-specific PCR. Patients were matched to age, sex, time-period controls and sputum samples from equivalent time periods were identified from a sputum biobank. Bacterial 16S rRNA gene profiling and Pseudomonas qPCR was used to characterize the respiratory microbiome. We identified 31 patients infected with PES and matched them with uPA controls. Patients infected with PES at baseline have lower microbial diversity (P = 0.02) and higher P. aeruginosa relative abundance (P < 0.005). Microbial community structure was found to cluster by PA strain type, although it was not the main determinant of community structure as additional factors were also found to be drivers of CF community structure. Communities from PES infected individuals were enriched with Pseudomonas, Streptococcus and Prevotella OTUs. The disproportionate disease experienced by ePA infected CF patients may be mediated through a combination of pathogen-pathogen factors as opposed to strictly enhanced virulence of infecting P. aeruginosa strains.


Assuntos
Fibrose Cística , Epidemias , Microbiota , Infecções por Pseudomonas , Fibrose Cística/complicações , Humanos , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética , RNA Ribossômico 16S/genética , Estudos Retrospectivos , Escarro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA