Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Transl Med ; 13: 170, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26021605

RESUMO

BACKGROUND: Propofol is a safe and widely used intravenous anesthetic agent, for which additional clinical uses including treatment of migraine, nausea, pain and anxiety have been proposed (Vasileiou et al. Eur J Pharmacol 605:1-8, 2009). However, propofol suffers from several disadvantages as a therapeutic outside anesthesia including its limited aqueous solubility and negligible oral bioavailability. The purpose of the studies described here was to evaluate, in both animals and human volunteers, whether fospropofol (a water soluble phosphate ester prodrug of propofol) would provide higher propofol bioavailability through non-intravenous routes. METHODS: Fospropofol was administered via intravenous, oral and intraduodenal routes to rats. Pharmacokinetic and pharmacodynamic parameters were then evaluated. Based on the promising animal data we subsequently conducted an oral and intraduodenal pharmacokinetic/pharmacodynamic study in human volunteers. RESULTS: In rats, bioavailability of propofol from fospropofol delivered orally was found to be appreciable, in the order of around 20-70%, depending on dose. Availability was especially marked following fospropofol administration via the intraduodenal route, where bioavailability approximated 100%. Fospropofol itself was not appreciably bioavailable when administered by any route except for intravenous. Pharmacologic effect following oral fospropofol was confirmed by observation of sedation and alleviation of thermal hyperalgesia in the rat chronic constrictive injury model of neuropathic pain. The human data also showed systemic availability of propofol from fospropofol administration via oral routes, a hereto novel finding. Assessment of sedation in human volunteers was correlated with pharmacokinetic measurements. CONCLUSIONS: These data suggest potential utility of oral administration of fospropofol for various therapeutic indications previously considered for propofol.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Propofol/análogos & derivados , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Analgésicos/farmacologia , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Humanos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/farmacocinética , Hipnóticos e Sedativos/farmacologia , Masculino , Pessoa de Meia-Idade , Propofol/administração & dosagem , Propofol/efeitos adversos , Propofol/farmacocinética , Ratos Sprague-Dawley , Adulto Jovem
2.
J Pharmacol Exp Ther ; 346(3): 406-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23776202

RESUMO

Glutamate carboxypeptidase II (GCP II) is a therapeutic target in neurologic disorders associated with excessive activation of glutamatergic systems. The potent, orally bioavailable GCP II inhibitor 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA) is effective in preclinical models of diseases where excess glutamate release is implicated, including neuropathic pain, and was the first GCP II inhibitor to be administered to man. The relationships between dosing regimen, pharmacokinetics, and analgesia in a neuropathic pain model were examined in rats to aid development of clinical dosing. The efficacy of oral 2-MPPA in the chronic constrictive injury model was not simply related to plasma concentrations. Even though maximal concentrations were observed within 1 hour of dosing, the analgesic effect took at least 8 days of daily dosing to become significant. The delay was not due to tissue drug accumulation since inhibitory concentrations of the drug were achieved in the nerve within 1 hour of dosing. There was also no accumulation of drug in plasma or tissue after multiple daily dosing. Effects were dependent on reaching a threshold concentration since dividing the daily dose led to a loss of effect. The analgesic effect outlasted plasma exposure and was maintained for days even after daily dosing was halted. The delayed onset, dependence on threshold plasma concentration, and sustained effects after exposure support the hypothesis that an indirect, long-lived mechanism of action exists. Although these longer lasting secondary mechanisms are not yet identified, daily clinical dosing of a GCP II inhibitor seems justified.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutaratos/farmacocinética , Glutaratos/uso terapêutico , Neuralgia/tratamento farmacológico , Compostos de Sulfidrila/farmacocinética , Compostos de Sulfidrila/uso terapêutico , Animais , Área Sob a Curva , Disponibilidade Biológica , Constrição Patológica/complicações , Constrição Patológica/tratamento farmacológico , Relação Dose-Resposta a Droga , Meia-Vida , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
J Pharmacol Exp Ther ; 343(3): 746-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22988061

RESUMO

Peripheral neuropathy from nerve trauma is a significant problem in the human population and often constitutes a dose-limiting toxicity in patients receiving chemotherapy. (3-2-Mercaptoethyl)biphenyl-2,3-dicarboxylic acid (E2072) is a potent (K(i) = 10 nM), selective, and orally available inhibitor of glutamate carboxypeptidase II (GCPII). Here, we report that E2072 attenuates hyperalgesia and nerve conduction velocity deficits in preclinical rodent models of neuropathic pain and oxaliplatin-induced neuropathy. In the chronic constrictive injury model, orally administered E2072 reversed pre-existing thermal hyperalgesia in rats in a dose-dependent fashion with a minimally effective dose of 0.1 mg/kg/day. It is noteworthy that multiple days of dosing of E2072 were required before analgesia was realized even though GCPII inhibitory exposures were achieved on the first day of dosing. In addition, analgesia was found to persist for up to 7 days after cessation of dosing, consistent with E2072's pharmacokinetic profile and sustained exposure. Furthermore, in a chronic oxaliplatin-induced neuropathy model (6 mg/kg i.p. oxaliplatin twice weekly for 4 weeks), female BALB/c mice receiving daily oral E2072 at 1.0 and 0.1 mg/kg displayed no deficits in either caudal or digital velocity compared with significant deficits observed in mice treated with oxaliplatin alone (12 ± 3 and 9 ± 2%, respectively). Similar findings were seen with oxaliplatin-induced digital and caudal amplitude deficits. It is noteworthy that E2072 showed no interference with the antineoplastic efficacy of oxaliplatin in mice bearing leukemia (L1210), even at doses 100 times its neuroprotective/analgesic dose, indicating a selective effect on neuropathy. These data support the therapeutic utility of GCPII inhibitors in neuropathy and neuropathic pain.


Assuntos
Benzoatos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glutamato Carboxipeptidase II/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Condução Nervosa/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuropatia Ciática/tratamento farmacológico , Compostos de Sulfidrila/uso terapêutico , Administração Oral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzoatos/administração & dosagem , Benzoatos/química , Benzoatos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Feminino , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Leucemia L1210/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Estrutura Molecular , Neuralgia/enzimologia , Neuralgia/fisiopatologia , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/enzimologia , Neuropatia Ciática/fisiopatologia , Compostos de Sulfidrila/administração & dosagem , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacocinética , Distribuição Tecidual
4.
Eur J Pharmacol ; 840: 89-103, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30268665

RESUMO

Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is often dose-limiting and impacts life quality and survival of cancer patients. Ghrelin agonists have neuroprotectant effects and may have a role in treating or preventing CIPN. We evaluated the CNS-penetrant ghrelin agonist HM01 in three experimental models of CIPN at doses of 3-30 mg/kg p.o. daily monitoring orexigenic properties, nerve conduction, mechanical allodynia, and intra-epidermal nerve fiber density (IENFD). In a cisplatin-based study, rats were dosed daily for 3 days (0.5 mg/kg i.p.) + HM01. Cisplatin treatment induced mechanical hypersensitivity which was significantly reduced by HM01. In a second study, oxaliplatin was administered to mice (6 mg/kg i.p. 3 times/week for 4 weeks) resulting in significant digital nerve conduction velocity (NCV) deficits and reduction of IENFD. Concurrent HM01 dose dependently prevented the decline in NCV and attenuated the reduction in IENFD. Pharmacokinetic studies showed HM01 accumulation in the dorsal root ganglia and sciatic nerves which reached concentrations > 10 fold that of plasma. In a third model, HM01 was tested in preventive and therapeutic paradigms in a bortezomib-based rat model (0.2 mg/kg i.v., 3 times/week for 8 weeks). In the preventive setting, HM01 blocked bortezomib-induced hyperalgesia and IENFD reduction at all doses tested. In the therapeutic setting, significant effect was observed, but only at the highest dose. Altogether, the robust peripheral nervous system penetration of HM01 and its ability to improve multiple oxaliplatin-, cisplatin-, and bortezomib-induced neurotoxicities suggest that HM01 may be a useful neuroprotective adjuvant for CIPN.


Assuntos
Antineoplásicos/efeitos adversos , Derivados de Benzeno/farmacologia , Grelina/agonistas , Sistema Nervoso/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Cisplatino/efeitos adversos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Condução Nervosa/efeitos dos fármacos , Piperidinas , Ratos
5.
Cancer Res ; 78(3): 817-829, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191802

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of disability in cancer survivors. CIPN investigations in preclinical model systems have focused on either behaviors or acute changes in nerve conduction velocity (NCV) and amplitude, but greater understanding of the underlying nature of axonal injury and its long-term processes is needed as cancer patients live longer. In this study, we used multiple independent endpoints to systematically characterize CIPN recovery in mice exposed to the antitubulin cancer drugs eribulin, ixabepilone, paclitaxel, or vinorelbine at MTDs. All of the drugs ablated intraepidermal nerve fibers and produced axonopathy, with a secondary disruption in myelin structure within 2 weeks of drug administration. In addition, all of the drugs reduced sensory NCV and amplitude, with greater deficits after paclitaxel and lesser deficits after ixabepilone. These effects correlated with degeneration in dorsal root ganglia (DRG) and sciatic nerve and abundance of Schwann cells. Although most injuries were fully reversible after 3-6 months after administration of eribulin, vinorelbine, and ixabepilone, we observed delayed recovery after paclitaxel that produced a more severe, pervasive, and prolonged neurotoxicity. Compared with other agents, paclitaxel also displayed a unique prolonged exposure in sciatic nerve and DRG. The most sensitive indicator of toxicity was axonopathy and secondary myelin changes accompanied by a reduction in intraepidermal nerve fiber density. Taken together, our findings suggest that intraepidermal nerve fiber density and changes in NCV and amplitude might provide measures of axonal injury to guide clinical practice.Significance: This detailed preclinical study of the long-term effects of widely used antitubulin cancer drugs on the peripheral nervous system may help guide clinical evaluations to improve personalized care in limiting neurotoxicity in cancer survivors. Cancer Res; 78(3); 817-29. ©2017 AACR.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Recuperação de Função Fisiológica/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Moduladores de Tubulina/toxicidade , Doença Aguda , Animais , Células Cultivadas , Feminino , Gânglios Espinais/lesões , Gânglios Espinais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/patologia , Doenças do Sistema Nervoso Periférico/patologia , Células de Schwann/patologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia
6.
Drug Discov Today ; 12(17-18): 767-76, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17826690

RESUMO

During the past 10 years, substantial progress has been made in the discovery and development of small molecule glutamate carboxypeptidase II (GCP II) inhibitors. These inhibitors have provided the necessary tools to investigate the physiological role of GCP II as well as the potential therapeutic benefits of its inhibition in neurological disorders of glutamatergic dysregulation. This review article details key GCP II inhibitors discovered in the last decade and important findings from preclinical and clinical studies.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Glutamato Carboxipeptidase II/química , Glutaratos/química , Glutaratos/uso terapêutico , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Compostos Organofosforados/química , Compostos Organofosforados/uso terapêutico , Ácidos Fosfínicos/química , Ácidos Fosfínicos/uso terapêutico , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Compostos de Sulfidrila/uso terapêutico
7.
Neurotox Res ; 32(1): 151-162, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28391556

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anticancer treatment with microtubule-targeted agents (MTAs). The frequency of severe CIPN, which can be dose limiting and even life threatening, varies widely among different MTAs. For example, paclitaxel induces a higher frequency of severe CIPN than does eribulin. Different MTAs also possess distinct mechanisms of microtubule-targeted action. Recently, we demonstrated that paclitaxel and eribulin differentially affect sciatic nerve axons, with paclitaxel inducing more pronounced neurodegenerative effects and eribulin inducing greater microtubule stabilizing biochemical effects. Here, we complement and extend these axonal studies by assessing the effects of paclitaxel and eribulin in the cell bodies of sciatic nerve axons, housed in the dorsal root ganglia (DRG). Importantly, the microtubule network in cell bodies is known to be significantly more dynamic than in axons. Paclitaxel induced activating transcription factor 3 expression, a marker of neuronal stress/injury. Paclitaxel also increased expression levels of acetylated tubulin and end binding protein 1, markers of microtubule stability and growth, respectively. These effects are hypothesized to be detrimental to the dynamic microtubule network within the cell bodies. In contrast, eribulin had no significant effect on any of these parameters in the cell bodies. Taken together, DRG cell bodies and their axons, two distinct neuronal cell compartments, contain functionally distinct microtubule networks that exhibit unique biochemical responses to different MTA treatments. We hypothesize that these distinct mechanistic actions may underlie the variability seen in the initiation, progression, persistence, and recovery from CIPN.


Assuntos
Antineoplásicos/toxicidade , Furanos/uso terapêutico , Cetonas/uso terapêutico , Paclitaxel/uso terapêutico , Neuropatia Ciática/induzido quimicamente , Neuropatia Ciática/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Fator 3 Ativador da Transcrição/metabolismo , Animais , Corpo Celular , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
8.
J Med Chem ; 49(10): 2876-85, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16686531

RESUMO

A series of thiol-based inhibitors containing a benzyl moiety at the P1' position have been synthesized and tested for their abilities to inhibit glutamate carboxypeptidase II (GCP II). 3-(2-Carboxy-5-mercaptopentyl)benzoic acid 6c was found to be the most potent inhibitor with an IC(50) value of 15 nM, 6-fold more potent than 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), a previously discovered, orally active GCP II inhibitor. Subsequent SAR studies have revealed that the phenoxy and phenylsulfanyl analogues of 6c, 3-(1-carboxy-4-mercaptobutoxy)benzoic acid 26a and 3-[(1-carboxy-4-mercaptobutyl)thio]benzoic acid 26b, also possess potent inhibitory activities toward GCP II. In the rat chronic constriction injury (CCI) model of neuropathic pain, compounds 6c and 26a significantly reduced hyperalgesia following oral administration (1.0 mg/kg/day).


Assuntos
Analgésicos/síntese química , Benzoatos/síntese química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Compostos de Sulfidrila/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Antígenos de Superfície , Benzoatos/química , Benzoatos/farmacologia , Doença Crônica , Constrição Patológica , Glutaratos/química , Glutaratos/farmacologia , Humanos , Dor/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Ratos , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia
9.
Adv Exp Med Biol ; 576: 327-37; discussion 361-3, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16802724

RESUMO

GCP II inhibition decreases extracellular excitotoxic glutamate and increases extracellular NAAG, both of which provide neuroprotection. We have demonstrated with our potent and selective GCP II inhibitors efficacy in models of stroke, ALS and neuropathic pain. GCP II inhibition may have significant potential benefits over existing glutamate-based neuroprotection strategies. The upstream mechanism seems selective for excitotoxic induced glutamate release, as GCP II inhibitors in normal animals induced no change in basal glutamate. This suggestion has recently been corroborated by Lieberman and coworkers24 who found that both NAAG release and increase in GCP II activity appear to be induced by electrical stimulation in crayfish nerve fibers and that subsequent NAAG hydrolysis to glutamate contributes, at least in part, to subsequent NMDA receptor activation. Interestingly, even at relatively high doses of compounds, GCP II inhibition did not appear to be associated with learning/memory deficits in animals. Additionally, quantitative neurophysiological testing data and visual analog scales for 'psychedelic effects' in Phase I single dose and repeat dose studies showed GCP II inhibition to be safe and well tolerated by both healthy volunteers and diabetic patients. GCP II inhibition may represent a novel glutamate regulating strategy devoid of the side effects that have hampered the development of postsynaptic glutamate receptor antagonists.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/metabolismo , Analgésicos/química , Analgésicos/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Glutamato Carboxipeptidase II/genética , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Humanos , Estrutura Molecular , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo
10.
Cancer Res ; 76(11): 3332-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197173

RESUMO

Chemotherapy-induced peripheral neuropathy is a dose-limiting side effect of many antineoplastic agents, but the mechanisms underlying the toxicities are unclear. At their MTDs, the microtubule-binding drugs paclitaxel and ixabepilone induce more severe neuropathy in mice relative to eribulin mesylate, paralleling their toxicity profiles in clinic. We hypothesized that the severity of their neurotoxic effects might be explained by the levels at which they accumulate in the peripheral nervous system. To test this hypothesis, we compared their pharmacokinetics and distribution in peripheral nerve tissue. After administration of a single intravenous dose, each drug was rapidly cleared from plasma but all persisted in the dorsal root ganglia (DRG) and sciatic nerve (SN) for up to 72 hours. Focusing on paclitaxel and eribulin, we performed a 2-week MTD-dosing regimen, followed by a determination of drug pharmacokinetics, tissue distribution, and multiple functional measures of peripheral nerve toxicity for 4 weeks. Consistent with the acute dosing study, both drugs persisted in peripheral nervous tissues for weeks, in contrast to their rapid clearance from plasma. Notably, although eribulin exhibited greater DRG and SN penetration than paclitaxel, the neurotoxicity observed functionally was consistently more severe with paclitaxel. Overall, our results argue that sustained exposure of microtubule-binding chemotherapeutic agents in peripheral nerve tissues cannot by itself account for their associated neurotoxicity. Cancer Res; 76(11); 3332-9. ©2016 AACR.


Assuntos
Apoptose/efeitos dos fármacos , Gânglios Espinais/patologia , Microtúbulos/patologia , Paclitaxel/farmacologia , Doenças do Sistema Nervoso Periférico/patologia , Nervo Isquiático/patologia , Animais , Western Blotting , Proliferação de Células , Relação Dose-Resposta a Droga , Eletrofisiologia , Epotilonas/farmacocinética , Epotilonas/farmacologia , Feminino , Furanos/farmacocinética , Furanos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Cetonas/farmacocinética , Cetonas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Paclitaxel/farmacocinética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Fatores de Tempo , Distribuição Tecidual , Moduladores de Tubulina/farmacocinética , Moduladores de Tubulina/farmacologia
11.
Cancer Res ; 76(17): 5115-23, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488522

RESUMO

Peripheral neuropathy is a serious, dose-limiting side effect of cancer treatment with microtubule-targeting drugs. Symptoms present in a "stocking-glove" distribution, with longest nerves affected most acutely, suggesting a length-dependent component to the toxicity. Axonal transport of ATP-producing mitochondria along neuronal microtubules from cell body to synapse is crucial to neuronal function. We compared the effects of the drugs paclitaxel and ixabepilone that bind along the lengths of microtubules and the drugs eribulin and vincristine that bind at microtubule ends, on mitochondrial trafficking in cultured human neuronal SK-N-SH cells and on axonal transport in mouse sciatic nerves. Antiproliferative concentrations of paclitaxel and ixabepilone significantly inhibited the anterograde transport velocity of mitochondria in neuronal cells, whereas eribulin and vincristine inhibited transport only at significantly higher concentrations. Confirming these observations, anterogradely transported amyloid precursor protein accumulated in ligated sciatic nerves of control and eribulin-treated mice, but not in paclitaxel-treated mice, indicating that paclitaxel inhibited anterograde axonal transport, whereas eribulin did not. Electron microscopy of sciatic nerves of paclitaxel-treated mice showed reduced organelle accumulation proximal to the ligation consistent with inhibition of anterograde (kinesin based) transport by paclitaxel. In contrast, none of the drugs significantly affected retrograde (dynein based) transport in neuronal cells or mouse nerves. Collectively, these results suggest that paclitaxel and ixabepilone, which bind along the lengths and stabilize microtubules, inhibit kinesin-based axonal transport, but not dynein-based transport, whereas the microtubule-destabilizing drugs, eribulin and vincristine, which bind preferentially to microtubule ends, have significantly less effect on all microtubule-based axonal transport. Cancer Res; 76(17); 5115-23. ©2016 AACR.


Assuntos
Antineoplásicos/toxicidade , Transporte Axonal/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Epotilonas/toxicidade , Furanos/toxicidade , Humanos , Cetonas/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Paclitaxel/toxicidade , Nervo Isquiático/efeitos dos fármacos , Moduladores de Tubulina/toxicidade , Vincristina/toxicidade
12.
Neurotox Res ; 29(2): 299-313, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26659667

RESUMO

Microtubule targeting agents (MTAs) often lead to treatment limiting and life threatening side effects, including chemotherapy-induced peripheral neuropathy (CIPN). The frequency of severe CIPN varies among different MTAs. Since the microtubule binding interactions and mechanisms of action also vary among MTAs, we hypothesized that these distinct mechanisms may underlie the variability in frequency of severe CIPN. Using a two-week, maximum tolerated dose model, we morphologically and biochemically analyzed sciatic nerves from mice treated with either paclitaxel or eribulin. These drugs differ in their manner of microtubule binding and mechanisms of action and reports indicate paclitaxel also induces a higher frequency of severe CIPN than does eribulin. Morphologically, paclitaxel increased the frequency of observed signs of axon degeneration more significantly than did eribulin. Alternatively, eribulin but not paclitaxel induced occasional myelin "halo" structures. Biochemically, paclitaxel, and eribulin both induced α-tubulin expression (~1.9- and ~2.5-fold, respectively) and tubulin acetylation, a marker for microtubule stability, (~5- and ~11.7-fold, respectively). Eribulin but not paclitaxel-induced EB1 expression ~2.2-fold while paclitaxel but not eribulin mildly suppressed EB3 expression. Both EB proteins are associated with microtubule growth. Eribulin's combination of relatively mild deleterious morphological effects coupled with more potent biochemical changes promoting microtubule stability and growth in mice correlate with lower frequencies of severe CIPN in humans. We suggest that these eribulin-induced effects create a relatively stable microtubule network that compensates, in part, for the toxic anti-cancer effects of the drug, leading to fewer reported incidences of CIPN than for paclitaxel.


Assuntos
Furanos/toxicidade , Cetonas/toxicidade , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Acetilação/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Neuropatia Ciática/induzido quimicamente , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Tubulina (Proteína)/metabolismo
13.
JCI Insight ; 1(12)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27536732

RESUMO

Recent gene-profiling analyses showed significant upregulation of the folate hydrolase (FOLH1) gene in the affected intestinal mucosa of patients with inflammatory bowel disease (IBD). The FOLH1 gene encodes a type II transmembrane glycoprotein termed glutamate carboxypeptidase II (GCPII). To establish that the previously reported increased gene expression was functional, we quantified the glutamate carboxypeptidase enzymatic activity in 31 surgical specimens and report a robust 2.8- to 41-fold increase in enzymatic activity in the affected intestinal mucosa of IBD patients compared with an uninvolved area in the same patients or intestinal mucosa from healthy controls. Using a human-to-mouse approach, we next showed a similar enzymatic increase in two well-validated IBD murine models and evaluated the therapeutic effect of the potent FOLH1/ GCPII inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA) (IC50 = 300 pM). In the dextran sodium sulfate (DSS) colitis model, 2-PMPA inhibited the GCPII activity in the colonic mucosa by over 90% and substantially reduced the disease activity. The significance of the target was confirmed in FOLH1-/- mice who exhibited resistance to DSS treatment. In the murine IL-10-/- model of spontaneous colitis, daily 2-PMPA treatment also significantly reduced both macroscopic and microscopic disease severity. These results provide the first evidence of FOLH1/GCPII enzymatic inhibition as a therapeutic option for IBD.

14.
J Med Chem ; 48(7): 2319-24, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15801825

RESUMO

Two representative glutamate carboxypeptidase II (GCP II) inhibitors, 2-(hydroxypentafluorophenylmethyl-phosphinoylmethyl)pentanedioic acid 2 and 2-(3-mercaptopropyl)pentanedioic acid 3, were synthesized in high optical purities (>97%ee). The two enantiomers of 2 were prepared from previously reported chiral intermediates, (R)- and (S)-2-(hydroxyphosphinoylmethyl)pentanedioic acid benzyl esters 8. The synthesis of (R)- and (S)-3 involves the hydrolysis of (R)- and (S)-3-(2-oxo-tetrahydro-thiopyran-3-yl)propionic acids, (R)- and (S)-11, the corresponding optically pure thiolactones delivered by chiral chromatographic separation of the racemic 11. GCP II inhibitory assay revealed that (S)-2 is 40-fold more potent than (R)-2. In contrast, both enantiomers of 3 inhibited GCP II with nearly equal potency. The efficacy observed in subsequent animal studies with these enantiomers correlated well with the inhibitory potency in a GCP II assay.


Assuntos
Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutaratos/síntese química , Ácidos Fosfínicos/síntese química , Compostos de Sulfidrila/síntese química , Analgésicos/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Isquemia Encefálica/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Constrição Patológica/complicações , Cristalografia por Raios X , Glutamato Carboxipeptidase II/química , Glutaratos/química , Glutaratos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , L-Lactato Desidrogenase/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Dor/tratamento farmacológico , Dor/etiologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia , Ácidos Fosfínicos/química , Ácidos Fosfínicos/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Técnicas de Cultura de Tecidos
15.
Psychopharmacology (Berl) ; 183(3): 275-84, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16220328

RESUMO

RATIONALE AND OBJECTIVES: We have recently reported that conditioned morphine reward and tolerance to its antinociceptive effect, but not expression of morphine dependence, were attenuated by 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a prototypic inhibitor of glutamate carboxipeptidase II (GCP II), which is an enzyme responsible for the supply of glutamate. In the present study, we investigated in more detail the effects of GCP II inhibition on opioid dependence and tolerance to its antinociceptive effect in C57/Bl mice using a novel GCP II inhibitor. RESULTS: The treatment with 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA; 60 but not 10 or 30 mg/kg) prevented the development of morphine tolerance without affecting acute morphine antinociception. 2-MPPA at 30 and 60 mg/kg did not prevent the development of dependence induced by 10 and 30 mg/kg of morphine. The study on opioid withdrawal syndrome, i.e., expression of opioid dependence, demonstrated that 2-MPPA potentiated jumping behavior and teeth chattering but attenuated chewing and ptosis. None of these opioid withdrawal signs were affected by 2-MPPA in morphine nondependent mice. Pretreatment with the mGluR II antagonist LY341495 (1 mg/kg) reversed the 2-MPPA-induced increase or decrease in opioid withdrawal signs in morphine-dependent mice. 2-MPPA (60 mg/kg) administered for 7 days with morphine did not affect brain concentration of this opiate. CONCLUSIONS: The present findings suggest complex effects of GCP II inhibition on morphine dependence and tolerance and imply a role of mGluR II in the actions of 2-MPPA.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutamato Carboxipeptidase II/antagonistas & inibidores , Dependência de Morfina/tratamento farmacológico , Morfina/farmacologia , Compostos Organofosforados/farmacologia , Aminoácidos/farmacologia , Animais , Tolerância a Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/metabolismo , Naloxona/farmacologia , Receptores de Glutamato Metabotrópico/fisiologia , Xantenos/farmacologia
16.
Brain Res ; 1048(1-2): 177-84, 2005 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15925329

RESUMO

Dipeptidyl peptidase IV (DPP IV) is a ubiquitous membrane-bound enzyme that cleaves the two N-terminal amino acids from peptides with a proline or alanine residue in the second position from the amino end. Potential substrates for DPP IV include several neuropeptides, suggesting a role for DPP IV in neurological processes. We have developed a potent DPP IV inhibitor (IC50 = 30 nM), 1-(2-amino-3-methyl-butyryl)-azetidine-2-carbonitrile (AMAC), which has shown efficacy in two established models of psychosis: mescaline-induced scratching and amphetamine-induced hyperactivity. In the mescaline-induced scratching model, AMAC treatment before mescaline administration reduced the number of scratching paroxysms by 68% (P < 0.01). The compound showed a dose-dependent effect, inhibiting significantly at 6, 20 and 60 mg/kg (37%, 39% and 68%, respectively). In the amphetamine-induced hyperactivity model, 50 and 60 mg/kg AMAC, given before injection of amphetamine, significantly reduced hyper-locomotion by 65% and 76%, respectively. Additionally, AMAC showed no significant activity in binding assays for 20 receptors thought to be involved in the pathology of schizophrenia, including dopamine, serotonin and glutamate. A structurally similar analog, 1-(2-dimethylamino-3-methyl-butyryl)-azetidine-2-carbonitrile (DAMAC), that does not inhibit DPP IV, was inactive in both models. Taken together, these data suggest that the antipsychotic effects of AMAC are the result of DPP IV inhibition.


Assuntos
Compostos Aza/uso terapêutico , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Hipercinese/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Anfetamina , Animais , Compostos Aza/síntese química , Compostos Aza/farmacocinética , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/síntese química , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Haloperidol/farmacologia , Hipercinese/induzido quimicamente , Hipersensibilidade/etiologia , Concentração Inibidora 50 , Masculino , Mescalina/toxicidade , Camundongos , Atividade Motora/efeitos dos fármacos , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor de Serotonina/toxicidade , Fatores de Tempo
17.
J Med Chem ; 58(18): 7258-72, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26309148

RESUMO

A series of 2-substituted 6-hydroxy-1,2,4-triazine-3,5(2H,4H)-dione derivatives were synthesized as inhibitors of D-amino acid oxidase (DAAO). Many compounds in this series were found to be potent DAAO inhibitors, with IC50 values in the double-digit nanomolar range. The 6-hydroxy-1,2,4-triazine-3,5(2H,4H)-dione pharmacophore appears metabolically resistant to O-glucuronidation unlike other structurally related DAAO inhibitors. Among them, 6-hydroxy-2-(naphthalen-1-ylmethyl)-1,2,4-triazine-3,5(2H,4H)-dione 11h was found to be selective over a number of targets and orally available in mice. Furthermore, oral coadministration of D-serine with 11h enhanced the plasma levels of D-serine in mice compared to the oral administration of D-serine alone, demonstrating its ability to serve as a pharmacoenhancer of D-serine.


Assuntos
D-Aminoácido Oxidase/antagonistas & inibidores , Triazinas/química , Animais , Disponibilidade Biológica , Linhagem Celular , Interações Medicamentosas , Humanos , Masculino , Camundongos , Modelos Moleculares , Ligação Proteica , Receptores de N-Metil-D-Aspartato/agonistas , Serina/sangue , Serina/química , Serina/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Triazinas/farmacocinética , Triazinas/farmacologia
18.
Neuropsychopharmacology ; 28(3): 457-67, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12629525

RESUMO

Inhibition of glutamate carboxypeptidase II (GCP II; NAALADase) produces a variety of effects on glutamatergic neurotransmission. The aim of this study was to investigate effects of GCP II inhibition with the selective inhibitor, 2-PMPA, on: (a) development of tolerance to the antinociceptive effects, (b) withdrawal, and (c) conditioned reward produced by morphine in C57/Bl mice. The degree of tolerance was assessed using the tail-flick test before and after 6 days of twice daily (b.i.d.) administration of 2-PMPA and 10 mg/kg of morphine. Opioid withdrawal was measured 3 days after twice daily morphine (30 or 10 mg/kg) administration, followed by naloxone challenge. Conditioned morphine reward was investigated using conditioned place preference with a single morphine dose (10 mg/kg). High doses of 2-PMPA inhibited the development of morphine tolerance (resembling the effect of 7.5 mg/kg of the NMDA receptor antagonist, memantine) while not affecting the severity of withdrawal. A high dose of 2-PMPA (100 mg/kg) also significantly potentiated morphine withdrawal, but inhibited both acquisition and expression of morphine-induced conditioned place preference. Memantine inhibited the intensity of morphine withdrawal as well as acquisition and expression of morphine-induced conditioned place preference. In addition, 2-PMPA did not affect learning or memory retrieval in a simple two-trial test, nor did it produce withdrawal symptoms in morphine-dependent, placebo-challenged mice. Results suggest involvement of GCP II (NAALADase) in phenomena related to opioid addiction.


Assuntos
Carboxipeptidases/antagonistas & inibidores , Tolerância a Medicamentos/fisiologia , Inibidores Enzimáticos/farmacologia , Dependência de Morfina/enzimologia , Compostos Organofosforados/farmacologia , Recompensa , Animais , Carboxipeptidases/metabolismo , Inibidores Enzimáticos/uso terapêutico , Glutamato Carboxipeptidase II , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dependência de Morfina/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Medição da Dor/efeitos dos fármacos
19.
J Med Chem ; 46(10): 1989-96, 2003 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-12723961

RESUMO

A series of 2-(thioalkyl)pentanedioic acids were synthesized and evaluated as inhibitors of glutamate carboxypeptidase II (GCP II, EC 3.4.17.21). The inhibitory potency of these thiol-based compounds against GCP II was found to be dependent on the number of methylene units between the thiol group and pentanedioic acid. A comparison of the SAR of the thiol-based inhibitors to that of the phosphonate-based inhibitors provides insight into the role of each of the two zinc-binding groups in GCP II inhibition. The most potent thiol-based inhibitor, 2-(3-mercaptopropyl)pentanedioic acid (IC(50) = 90 nM), was found to be orally bioavailable in rats and exhibited efficacy in an animal model of neuropathic pain following oral administration.


Assuntos
Analgésicos/síntese química , Carboxipeptidases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Glutaratos/síntese química , Compostos de Sulfidrila/síntese química , Administração Oral , Analgésicos/química , Analgésicos/farmacologia , Animais , Disponibilidade Biológica , Carboxipeptidases/química , Constrição Patológica/complicações , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutamato Carboxipeptidase II , Glutaratos/química , Glutaratos/farmacologia , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Dor/tratamento farmacológico , Dor/etiologia , Doenças do Sistema Nervoso Periférico/complicações , Ratos , Ratos Sprague-Dawley , Nervo Isquiático , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia
20.
Neuropeptides ; 37(5): 298-306, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14607107

RESUMO

N-Acetylaspartylglutamate (NAAG) is a peptide neurotransmitter present in the brain and spinal cord. It is hydrolysed by glutamate carboxypeptidase II (GCPII); thus, the GCP-II inhibitor 2-[phosphono-methyl]-pentanedioic acid (2-PMPA) protects endogenous NAAG from degradation, allowing its effects to be studied in vivo. We recorded the effect of spinal 2-PMPA (50-1000 microg) on the electrical-evoked activity of dorsal horn neurones in normal and carrageenan-inflamed animals, and in the spinal nerve ligation (SNL) model of neuropathy and sham-operated animals. In normal animals, 1000 microg 2-PMPA selectively inhibited noxious-evoked activity (input, post-discharge and C- and Adelta-fibre-evoked responses), and not low threshold Abeta-fibre-evoked responses. After carrageenan inflammation, the lower dose of 100 microg 2-PMPA inhibited input, post-discharge, C- and Adelta-fibre-evoked responses by a significantly greater amount than the same dose in normal animals. 2-PMPA inhibited neuronal responses less consistently in sham-operated and SNL animals, and effects were not significantly different from those seen in normal animals. NAAG is an agonist at the inhibitory metabotropic glutamate receptor mGluR3, and 2-PMPA may inhibit nociceptive transmission in normal animals by elevating synaptic NAAG levels, allowing it to activate mGluR3 and thus reducing transmitter release from afferent nerve terminals. mGluR3 expression in the superficial dorsal horn is upregulated after peripheral inflammation, perhaps explaining the greater inhibition of neuronal responses we observed after carrageenan inflammation. These results support an important role of endogenous NAAG in the spinal processing of noxious information.


Assuntos
Dipeptídeos/metabolismo , Glutamato Carboxipeptidase II/antagonistas & inibidores , Neuralgia/fisiopatologia , Neurite (Inflamação)/fisiopatologia , Células do Corno Posterior/fisiopatologia , Animais , Carragenina , Modelos Animais de Doenças , Estimulação Elétrica , Ligadura , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neuralgia/induzido quimicamente , Neuralgia/imunologia , Neurite (Inflamação)/induzido quimicamente , Neurite (Inflamação)/imunologia , Nociceptores/fisiologia , Compostos Organofosforados/farmacologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/imunologia , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA