Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(11): e1011589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934791

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Virulência , Aprendizado de Máquina
2.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039466

RESUMO

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Assuntos
Adenocarcinoma/patologia , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Terapia de Alvo Molecular , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Rev Microbiol ; 21(2): 112-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36307535

RESUMO

Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais/farmacologia , Substituição de Aminoácidos , Anticorpos Neutralizantes , Epitopos , Anticorpos Antivirais
4.
Virus Evol ; 8(1): veac023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502202

RESUMO

COG-UK Mutation Explorer (COG-UK-ME, https://sars2.cvr.gla.ac.uk/cog-uk/-last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics.

5.
Cell Rep ; 31(6): 107625, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402285

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3ß) a key regulator of glycolysis. Pharmacological inhibition of GSK3ß results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3ß inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Fator de Transcrição GATA6/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Humanos
6.
Nat Protoc ; 13(4): 705-722, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29543794

RESUMO

A major endeavor of systems biology is the construction of graphical and computational models of biological pathways as a means to better understand their structure and function. Here, we present a protocol for a biologist-friendly graphical modeling scheme that facilitates the construction of detailed network diagrams, summarizing the components of a biological pathway (such as proteins and biochemicals) and illustrating how they interact. These diagrams can then be used to simulate activity flow through a pathway, thereby modeling its dynamic behavior. The protocol is divided into four sections: (i) assembly of network diagrams using the modified Edinburgh Pathway Notation (mEPN) scheme and yEd network editing software with pathway information obtained from published literature and databases of molecular interaction data; (ii) parameterization of the pathway model within yEd through the placement of 'tokens' on the basis of the known or imputed amount or activity of a component; (iii) model testing through visualization and quantitative analysis of the movement of tokens through the pathway, using the network analysis tool Graphia Professional and (iv) optimization of model parameterization and experimentation. This is the first modeling approach that combines a sophisticated notation scheme for depicting biological events at the molecular level with a Petri net-based flow simulation algorithm and a powerful visualization engine with which to observe the dynamics of the system being modeled. Unlike many mathematical approaches to modeling pathways, it does not require the construction of a series of equations or rate constants for model parameterization. Depending on a model's complexity and the availability of information, its construction can take days to months, and, with refinement, possibly years. However, once assembled and parameterized, a simulation run, even on a large model, typically takes only seconds. Models constructed using this approach provide a means of knowledge management, information exchange and, through the computation simulation of their dynamic activity, generation and testing of hypotheses, as well as prediction of a system's behavior when perturbed.


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Simulação por Computador , Biologia de Sistemas/métodos , Algoritmos , Redes e Vias Metabólicas , Modelos Biológicos , Mapas de Interação de Proteínas , Software
7.
Genome Biol ; 16: 22, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25723102

RESUMO

The FANTOM5 project investigates transcription initiation activities in more than 1,000 human and mouse primary cells, cell lines and tissues using CAGE. Based on manual curation of sample information and development of an ontology for sample classification, we assemble the resulting data into a centralized data resource (http://fantom.gsc.riken.jp/5/). This resource contains web-based tools and data-access points for the research community to search and extract data related to samples, genes, promoter activities, transcription factors and enhancers across the FANTOM5 atlas.


Assuntos
Genômica/métodos , Regiões Promotoras Genéticas , Software , Iniciação da Transcrição Genética , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Camundongos , Transcriptoma , Interface Usuário-Computador
8.
F1000Res ; 3: 246, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25949802

RESUMO

BioLayout Express (3D) is a network analysis tool designed for the visualisation and analysis of graphs derived from biological data. It has proved to be powerful in the analysis of gene expression data, biological pathways and in a range of other applications. In version 3.2 of the tool we have introduced the ability to import, merge and display pathways and protein interaction networks available in the BioPAX Level 3 standard exchange format. A graphical interface allows users to search for pathways or interaction data stored in the Pathway Commons database. Queries using either gene/protein or pathway names are made via the cPath2 client and users can also define the source and/or species of information that they wish to examine. Data matching a query are listed and individual records may be viewed in isolation or merged using an 'Advanced' query tab. A visualisation scheme has been defined by mapping BioPAX entity types to a range of glyphs. Graphs of these data can be viewed and explored within BioLayout as 2D or 3D graph layouts, where they can be edited and/or exported for visualisation and editing within other tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA