Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(5): 054001, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29219843

RESUMO

Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current-voltage (I-V) measurements.

2.
Nanoscale Res Lett ; 17(1): 105, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342556

RESUMO

Optoelectronic memristor is a promising candidate for future light-controllable high-density storage and neuromorphic computing. In this work, light-tunable resistive switching (RS) characteristics are demonstrated in the CMOS process-compatible ITO/HfO2/TiO2/ITO optoelectronic memristor. The device shows an average of 79.24% transmittance under visible light. After electroforming, stable bipolar analog switching, data retention beyond 104 s, and endurance of 106 cycles are realized. An obvious current increase is observed under 405 nm wavelength light irradiation both in high and in low resistance states. The long-term potentiation of synaptic property can be achieved by both electrical and optical stimulation. Moreover, based on the optical potentiation and electrical depression of conductances, the simulated Hopfield neural network (HNN) is trained for learning the 10 × 10 pixels size image. The HNN can be successfully trained to recognize the input image with a training accuracy of 100% in 13 iterations. These results suggest that this optoelectronic memristor has a high potential for neuromorphic application.

3.
Adv Mater ; 32(46): e2004398, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33063391

RESUMO

The sensory nervous system (SNS) builds up the association between external stimuli and the response of organisms. In this system, habituation is a fundamental characteristic that filters out irrelevantly repetitive information and makes the SNS adapt to the external environment. To emulate this critical process in electronic devices, a Lix SiOy -based memristor (TiN/Lix SiOy /Pt) is developed where the temporal response under repetitive stimulation is similar to that of habituation. By connecting this synaptic device to a leaky integrate-and-fire neuron based on a Ag/SiO2 :Ag/Au memristor, a fully memristive SNS with habituation is experimentally demonstrated. Finally, a habituation spiking neural network based on the SNS is built and its application in obstacle avoidance for robot navigation is successfully presented. The results provide that a direct emulation of the biologically inspired learning process by memristors could be a sound choice for neuromorphic hardware implementation.


Assuntos
Biomimética/instrumentação , Habituação Psicofisiológica , Fenômenos Fisiológicos do Sistema Nervoso , Sensação/fisiologia , Desenho de Equipamento , Dióxido de Silício , Prata , Titânio
4.
Nanoscale ; 10(13): 5875-5881, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29508884

RESUMO

Neuromorphic engineering is a promising technology for developing new computing systems owing to the low-power operation and the massive parallelism similarity to the human brain. Optimal function of neuronal networks requires interplay between rapid forms of Hebbian plasticity and homeostatic mechanisms that adjust the threshold for plasticity, termed metaplasticity. Metaplasticity has important implications in synapses and is barely addressed in neuromorphic devices. An understanding of metaplasticity might yield new insights into how the modification of synapses is regulated and how information is stored by synapses in the brain. Here, we propose a method to imitate the metaplasticity inhibition of long-term potentiation (MILTP) for the first time based on memristors. In addition, the metaplasticity facilitation of long-term potentiation (MFLTP) and the metaplasticity facilitation of long-term depression (MFLTD) are also achieved. Moreover, the mechanisms of metaplasticity in memristors are discussed. Additionally, the proposed method to mimic the metaplasticity is verified by three different memristor devices including oxide-based resistive memory (OxRAM), interface switching random access memory, and conductive bridging random access memory (CBRAM). This is a further step toward developing fully bio-realistic artificial synapses using memristors. The findings in this study will deepen our understanding of metaplasticity, as well as provide new insight into bio-realistic neuromorphic engineering.


Assuntos
Potenciação de Longa Duração , Modelos Neurológicos , Plasticidade Neuronal , Neurônios/fisiologia , Sinapses/fisiologia , Equipamentos e Provisões Elétricas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA