RESUMO
Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Neoplasias/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Transdução de SinaisRESUMO
BACKGROUND: Calorie restriction (CR) ameliorates preclinical models of multiple sclerosis (MS) via multiple mechanisms. These include decreased leptin, a proinflammatory adipokine, but mechanistic studies in humans are lacking. Tests of daily and intermittent CR (iCR) in people with MS (pwMS) showed improvements in fatigue and well-being measures. This trial studied the effects of 12-week iCR on metabolic, immunological, and clinical outcomes in pwMS. METHOD: Relapsing-remitting MS participants were randomised to iCR or a control group. Study visits were conducted at baseline, 6 and 12 weeks. The primary outcome was reduction in serum leptin levels at 12 weeks. Feasibility and safety were assessed by diet adherence and adverse events (AEs). Secondary outcomes included changes in anthropometric and body composition measures, metabolic and immunologic profiling, and clinical measures. Mixed effects linear regression models were used to evaluate outcome differences between and within groups over time. RESULTS: Forty-two pwMS were randomised, 34 completed the study (17/group). Leptin serum levels at 12 weeks were significantly lower in the iCR versus the control group (mean decrease -6.98 µg/dL, 95% CI: -28.02 to 14.06; p=0.03). Adherence to iCR was 99.5% and 97.2% at 6 and 12 weeks, respectively, and no serious AEs were reported. An increase in blood CD45RO+ regulatory T-cell numbers was seen after 6 weeks of iCR. Exploratory cognitive testing demonstrated a significant improvement in the Symbol Digit Modality Test Score in the iCR group at 12 weeks. CONCLUSIONS: iCR has the potential to benefit metabolic and immunologic profiles and is safe and feasible in pwMS. TRIAL REGISTRATION NUMBER: NCT03539094 .
RESUMO
Type III IFNs (IFNLs) are newly discovered cytokines, acting at epithelial and other barriers, that exert immunomodulatory functions in addition to their primary roles in antiviral defense. In this study, we define a role for IFNLs in maintaining autoreactive T cell effector function and limiting recovery in a murine model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis. Genetic or Ab-based neutralization of the IFNL receptor (IFNLR) resulted in lack of disease maintenance during experimental autoimmune encephalomyelitis, with loss of CNS Th1 effector responses and limited axonal injury. Phenotypic effects of IFNLR signaling were traced to increased APC function, with associated increase in T cell production of IFN-γ and GM-CSF. Consistent with this, IFNL levels within lesions of CNS tissues derived from patients with MS were elevated compared with MS normal-appearing white matter. Furthermore, expression of IFNLR was selectively elevated in MS active lesions compared with inactive lesions or normal-appearing white matter. These findings suggest IFNL signaling as a potential therapeutic target to prevent chronic autoimmune neuroinflammation.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Autoimunidade , Sistema Nervoso Central , Citocinas/metabolismo , Humanos , CamundongosRESUMO
Natalizumab, a humanized monoclonal antibody (mAb) against α4-integrin, reduces the number of dendritic cells (DC) in cerebral perivascular spaces in multiple sclerosis (MS). Selective deletion of α4-integrin in CD11c+ cells should curtail their migration to the central nervous system (CNS) and ameliorate experimental autoimmune encephalomyelitis (EAE). We generated CD11c.Cre+/-ITGA4fl/fl C57BL/6 mice to selectively delete α4-integrin in CD11c+ cells. Active immunization and adoptive transfer EAE models were employed and compared with WT controls. Multiparameter flow cytometry was utilized to immunophenotype leukocyte subsets. Single-cell RNA sequencing was used to profile individual cells. α4-Integrin expression by CD11c+ cells was significantly reduced in primary and secondary lymphoid organs in CD11c.Cre+/-ITGA4fl/fl mice. In active EAE, a delayed disease onset was observed in CD11c.Cre+/-ITGA4fl/fl mice, during which CD11c+CD88+ cells were sequestered in the blood. Upon clinical EAE onset, CD11c+CD88+ cells appeared in the CNS and expressed CD317+ In adoptive transfer experiments, CD11c.Cre+/-ITGA4fl/fl mice had ameliorated clinical disease phenotype associated with significantly diminished numbers of CNS CD11c+CD88+CD317+ cells. In human cerebrospinal fluid from subjects with neuroinflammation, microglia-like cells display coincident expression of ITGAX (CD11c), C5AR1 (CD88), and BST2 (CD317). In mice, we show that only activated, but not naïve microglia expressed CD11c, CD88, and CD317. Finally, anti-CD317 treatment prior to clinical EAE substantially enhanced recovery in mice.
Assuntos
Antígenos CD/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Integrina alfa4/metabolismo , Células Mieloides/metabolismo , Animais , Apresentação de Antígeno , Células Cultivadas , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Feminino , Humanos , Masculino , Camundongos , Microglia/metabolismoRESUMO
Ectopic lymphoid tissue containing B cells forms in the meninges at late stages of human multiple sclerosis (MS) and when neuroinflammation is induced by interleukin (IL)-17 producing T helper (Th17) cells in rodents. B cell differentiation and the subsequent release of class-switched immunoglobulins have been speculated to occur in the meninges, but the exact cellular composition and underlying mechanisms of meningeal-dominated inflammation remain unknown. Here, we performed in-depth characterization of meningeal versus parenchymal Th17-induced rodent neuroinflammation. The most pronounced cellular and transcriptional differences between these compartments was the localization of B cells exhibiting a follicular phenotype exclusively to the meninges. Correspondingly, meningeal but not parenchymal Th17 cells acquired a B cell-supporting phenotype and resided in close contact with B cells. This preferential B cell tropism for the meninges and the formation of meningeal ectopic lymphoid tissue was partially dependent on the expression of the transcription factor Bcl6 in Th17 cells that is required in other T cell lineages to induce isotype class switching in B cells. A function of Bcl6 in Th17 cells was only detected in vivo and was reflected by the induction of B cell-supporting cytokines, the appearance of follicular B cells in the meninges, and of immunoglobulin class switching in the cerebrospinal fluid. We thus identify the induction of a B cell-supporting meningeal microenvironment by Bcl6 in Th17 cells as a mechanism controlling compartment specificity in neuroinflammation.
Assuntos
Doenças Neuroinflamatórias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células Th17/metabolismo , Animais , Linfócitos B/imunologia , Comunicação Celular , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Centro Germinativo/imunologia , Inflamação/metabolismo , Ativação Linfocitária , Masculino , Meninges/imunologia , Meninges/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/fisiopatologia , Tecido Parenquimatoso/imunologia , Tecido Parenquimatoso/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Células Th17/imunologia , Células Th17/fisiologiaRESUMO
OBJECTIVE: In older adults, major depressive disorder (MDD) is associated with accelerated physiological and cognitive aging, generating interest in uncovering biological pathways that may be targetable by interventions. Growth differentiation factor-15 (GDF-15) plays a significant role in biological aging via multiple biological pathways relevant to age and age-related diseases. Elevated levels of GDF-15 correlate with increasing chronological age, decreased telomerase activity, and increased mortality risk in older adults. We sought to evaluate the circulating levels of GDF-15 in older adults with MDD and its association with depression severity, physical comorbidity burden, age of onset of first depressive episode, and cognitive performance. DESIGN: This study assayed circulating levels of GDF-15 in 393 older adults (mean ± SD age 70 ± 6.6 years, male:female ratio 1:1.54), 308 with MDD and 85 non-depressed comparison individuals. RESULTS: After adjusting for confounding variables, depressed older adults had significantly higher GDF-15 serum levels (640.1 ± 501.5 ng/mL) than comparison individuals (431.90 ± 223.35 ng/mL) (t=3.75, d.f.= 391, p=0.0002). Among depressed individuals, those with high GDF-15 had higher levels of comorbid physical illness, lower executive cognitive functioning, and higher likelihood of having late-onset depression. CONCLUSION: Our results suggest that depression in late life is associated with GDF-15, a marker of amplified age-related biological changes. GDF-15 is a novel and potentially targetable biological pathway between depression and accelerated aging, including cognitive aging.
Assuntos
Transtorno Depressivo Maior , Fator 15 de Diferenciação de Crescimento , Humanos , Masculino , Feminino , Idoso , Transtorno Depressivo Maior/epidemiologia , Depressão/epidemiologia , Envelhecimento , Comorbidade , BiomarcadoresRESUMO
Microglia are found pathologically at all stages of multiple sclerosis (MS) lesion development and are hypothesized to contribute to both inflammatory injury and neuroprotection in the MS brain. Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed, play an important role as environmental sensors, and are involved in calcium homeostasis for a variety of cells. TRPV4 modulates myeloid cell phagocytosis in the periphery and microglial motility in the central nervous system. We hypothesized that TRPV4 deletion would alter microglia phagocytosis in vitro and lessen disease activity and demyelination in experimental autoimmune encephalitis (EAE) and cuprizone-induced demyelination. We found that genetic deletion of TRPV4 led to increased microglial phagocytosis in vitro but did not alter the degree of demyelination or remyelination in the cuprizone mouse model of MS. We also found no difference in disease in EAE following global or microglia-specific deletion of Trpv4. Additionally, lesioned and normal appearing white matter from MS brains exhibited similar TRPV4 expression compared to healthy brain tissue. Taken together, these findings indicate that TRPV4 modulates microglial activity but does not impact disease activity in mouse models of MS, suggesting a muted and/or redundant role in MS pathogenesis.
Assuntos
Doenças Desmielinizantes , Microglia , Canais de Cátion TRPV , Animais , Camundongos , Cuprizona/efeitos adversos , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismoRESUMO
BACKGROUND: Myelin oligodendrocyte glycoprotein antibody disease (MOGAD) can radiographically mimic multiple sclerosis (MS) and aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD). Central vein sign (CVS) prevalence has not yet been well-established in MOGAD. OBJECTIVE: Characterize the magnetic resonance imaging (MRI) appearance and CVS prevalence of MOGAD patients in comparison to matched cohorts of MS and AQP4+ NMOSD. METHODS: Clinical MRIs from 26 MOGAD patients were compared to matched cohorts of MS and AQP4+ NMOSD. Brain MRIs were assessed for involvement within predefined regions of interest. CVS was assessed by overlaying fluid-attenuated inversion recovery (FLAIR) and susceptibility-weighted sequences. Topographic analyses were performed on spinal cord and orbital MRIs when available. RESULTS: MOGAD patients had fewer brain lesions and average CVS+ rate of 12.1%, compared to 44.4% in MS patients (p = 0.0008). MOGAD spinal cord and optic nerve involvement was lengthier than MS (5.8 vs 1.0 vertebral segments, p = 0.020; 3.0 vs 0.5 cm, p < 0.0001). MOGAD patients tended to have bilateral/anterior optic nerve pathology with perineural contrast enhancement, contrasting with posterior optic nerve involvement in NMOSD. CONCLUSION: CVS+ rate and longer segments of involvement in the spinal cord and optic nerve can differentiate MOGAD from MS, but do not discriminate as well between MOGAD and AQP4+ NMOSD.
Assuntos
Esclerose Múltipla , Neuromielite Óptica , Aquaporina 4 , Autoanticorpos , Humanos , Esclerose Múltipla/diagnóstico por imagem , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica/diagnóstico por imagemRESUMO
The success of B cell depletion therapies and identification of leptomeningeal ectopic lymphoid tissue (ELT) in patients with multiple sclerosis (MS) has renewed interest in the antibody-independent pathogenic functions of B cells during neuroinflammation. The timing and location of B cell antigen presentation during MS and its animal model experimental autoimmune encephalomyelitis (EAE) remain undefined. Using a new EAE system that incorporates temporal regulation of MHCII expression by myelin-specific B cells, we observed the rapid formation of large B cell clusters in the spinal cord subarachnoid space. Neutrophils preceded the accumulation of meningeal B cell clusters, and inhibition of CXCR2-mediated granulocyte trafficking to the central nervous system reduced pathogenic B cell clusters and disease severity. Further, B cell-restricted very late antigen-4 (VLA-4) deficiency abrogated EAE dependent on B cell antigen presentation. Together, our findings demonstrate that neutrophils coordinate VLA-4-dependent B cell accumulation within the meninges during neuroinflammation, a key early step in the formation of ELT observed in MS.
Assuntos
Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Integrina alfa4beta1/metabolismo , Meninges/imunologia , Esclerose Múltipla/patologia , Animais , Apresentação de Antígeno , Linfócitos B/patologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Integrina alfa4beta1/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Masculino , Meninges/patologia , Meningite/imunologia , Meningite/patologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Células Mieloides/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Coelhos , Receptores de Interleucina-8B/metabolismo , Espaço Subaracnóideo/patologiaRESUMO
BACKGROUND: Patients with chronic inflammatory disease (CID) treated with immunosuppressive medications have increased risk for severe COVID-19. Although mRNA-based SARS-CoV-2 vaccination provides protection in immunocompetent persons, immunogenicity in immunosuppressed patients with CID is unclear. OBJECTIVE: To determine the immunogenicity of mRNA-based SARS-CoV-2 vaccines in patients with CID. DESIGN: Prospective observational cohort study. SETTING: Two U.S. CID referral centers. PARTICIPANTS: Volunteer sample of adults with confirmed CID eligible for early COVID-19 vaccination, including hospital employees of any age and patients older than 65 years. Immunocompetent participants were recruited separately from hospital employees. All participants received 2 doses of mRNA vaccine against SARS-CoV-2 between 10 December 2020 and 20 March 2021. Participants were assessed within 2 weeks before vaccination and 20 days after final vaccination. MEASUREMENTS: Anti-SARS-CoV-2 spike (S) IgG+ binding in all participants, and neutralizing antibody titers and circulating S-specific plasmablasts in a subset to assess humoral response after vaccination. RESULTS: Most of the 133 participants with CID (88.7%) and all 53 immunocompetent participants developed antibodies in response to mRNA-based SARS-CoV-2 vaccination, although some with CID developed numerically lower titers of anti-S IgG. Anti-S IgG antibody titers after vaccination were lower in participants with CID receiving glucocorticoids (n = 17) than in those not receiving them; the geometric mean of anti-S IgG antibodies was 357 (95% CI, 96 to 1324) for participants receiving prednisone versus 2190 (CI, 1598 to 3002) for those not receiving it. Anti-S IgG antibody titers were also lower in those receiving B-cell depletion therapy (BCDT) (n = 10). Measures of immunogenicity differed numerically between those who were and those who were not receiving antimetabolites (n = 48), tumor necrosis factor inhibitors (n = 39), and Janus kinase inhibitors (n = 11); however, 95% CIs were wide and overlapped. Neutralization titers seemed generally consistent with anti-S IgG results. Results were not adjusted for differences in baseline clinical factors, including other immunosuppressant therapies. LIMITATIONS: Small sample that lacked demographic diversity, and residual confounding. CONCLUSION: Compared with nonusers, patients with CID treated with glucocorticoids and BCDT seem to have lower SARS-CoV-2 vaccine-induced antibody responses. These preliminary findings require confirmation in a larger study. PRIMARY FUNDING SOURCE: The Leona M. and Harry B. Helmsley Charitable Trust, Marcus Program in Precision Medicine Innovation, National Center for Advancing Translational Sciences, and National Institute of Arthritis and Musculoskeletal and Skin Diseases.
RESUMO
Importance: Episodic memory and executive function are essential aspects of cognitive functioning that decline with aging. This decline may be ameliorable with lifestyle interventions. Objective: To determine whether mindfulness-based stress reduction (MBSR), exercise, or a combination of both improve cognitive function in older adults. Design, Setting, and Participants: This 2 × 2 factorial randomized clinical trial was conducted at 2 US sites (Washington University in St Louis and University of California, San Diego). A total of 585 older adults (aged 65-84 y) with subjective cognitive concerns, but not dementia, were randomized (enrollment from November 19, 2015, to January 23, 2019; final follow-up on March 16, 2020). Interventions: Participants were randomized to undergo the following interventions: MBSR with a target of 60 minutes daily of meditation (n = 150); exercise with aerobic, strength, and functional components with a target of at least 300 minutes weekly (n = 138); combined MBSR and exercise (n = 144); or a health education control group (n = 153). Interventions lasted 18 months and consisted of group-based classes and home practice. Main Outcomes and Measures: The 2 primary outcomes were composites of episodic memory and executive function (standardized to a mean [SD] of 0 [1]; higher composite scores indicate better cognitive performance) from neuropsychological testing; the primary end point was 6 months and the secondary end point was 18 months. There were 5 reported secondary outcomes: hippocampal volume and dorsolateral prefrontal cortex thickness and surface area from structural magnetic resonance imaging and functional cognitive capacity and self-reported cognitive concerns. Results: Among 585 randomized participants (mean age, 71.5 years; 424 [72.5%] women), 568 (97.1%) completed 6 months in the trial and 475 (81.2%) completed 18 months. At 6 months, there was no significant effect of mindfulness training or exercise on episodic memory (MBSR vs no MBSR: 0.44 vs 0.48; mean difference, -0.04 points [95% CI, -0.15 to 0.07]; P = .50; exercise vs no exercise: 0.49 vs 0.42; difference, 0.07 [95% CI, -0.04 to 0.17]; P = .23) or executive function (MBSR vs no MBSR: 0.39 vs 0.31; mean difference, 0.08 points [95% CI, -0.02 to 0.19]; P = .12; exercise vs no exercise: 0.39 vs 0.32; difference, 0.07 [95% CI, -0.03 to 0.18]; P = .17) and there were no intervention effects at the secondary end point of 18 months. There was no significant interaction between mindfulness training and exercise (P = .93 for memory and P = .29 for executive function) at 6 months. Of the 5 prespecified secondary outcomes, none showed a significant improvement with either intervention compared with those not receiving the intervention. Conclusions and Relevance: Among older adults with subjective cognitive concerns, mindfulness training, exercise, or both did not result in significant differences in improvement in episodic memory or executive function at 6 months. The findings do not support the use of these interventions for improving cognition in older adults with subjective cognitive concerns. Trial Registration: ClinicalTrials.gov Identifier: NCT02665481.
Assuntos
Envelhecimento Cognitivo , Disfunção Cognitiva , Terapia por Exercício , Meditação , Atenção Plena , Idoso , Feminino , Humanos , Masculino , Cognição/fisiologia , Função Executiva/fisiologia , Exercício Físico/fisiologia , Exercício Físico/psicologia , Meditação/métodos , Meditação/psicologia , Atenção Plena/métodos , Memória Episódica , Terapia por Exercício/métodos , Terapia por Exercício/psicologia , Envelhecimento Cognitivo/fisiologia , Envelhecimento Cognitivo/psicologia , Estilo de Vida Saudável/fisiologia , Comportamentos Relacionados com a Saúde/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/prevenção & controle , Estresse Psicológico/terapia , Idoso de 80 Anos ou mais , Testes Neuropsicológicos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/terapia , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND/AIMS: Age-related cognitive decline is a pervasive problem in our aging population. To date, no pharmacological treatments to halt or reverse cognitive decline are available. Behavioral interventions, such as physical exercise and Mindfulness-Based Stress Reduction, may reduce or reverse cognitive decline, but rigorously designed randomized controlled trials are needed to test the efficacy of such interventions. METHODS: Here, we describe the design of the Mindfulness, Education, and Exercise study, an 18-month randomized controlled trial that will assess the effect of two interventions-mindfulness training plus moderate-to-vigorous intensity exercise or moderate-to-vigorous intensity exercise alone-compared with a health education control group on cognitive function in older adults. An extensive battery of biobehavioral assessments will be used to understand the mechanisms of cognitive remediation, by using structural and resting state functional magnetic resonance imaging, insulin sensitivity, inflammation, and metabolic and behavioral assessments. RESULTS: We provide the results from a preliminary study (n = 29) of non-randomized pilot participants who received both the exercise and Mindfulness-Based Stress Reduction interventions. We also provide details on the recruitment and baseline characteristics of the randomized controlled trial sample (n = 585). CONCLUSION: When complete, the Mindfulness, Education, and Exercise study will inform the research community on the efficacy of these widely available interventions improve cognitive functioning in older adults.
Assuntos
Disfunção Cognitiva/terapia , Exercício Físico , Educação em Saúde/métodos , Atenção Plena/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Idoso , Cognição , Envelhecimento Cognitivo , Disfunção Cognitiva/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória , Projetos Piloto , Resultado do TratamentoRESUMO
BACKGROUND: The importance of B lymphocytes to present antigens for antibody production is well documented. In contrast, very little is known about their capacity to influence CD4+ T-cell activation during a primary or secondary response to allergens. OBJECTIVE: Using mouse models of asthma, we investigated the role of B cells as antigen-presenting cells in priming and maintenance of TH cell responses. METHODS: Mice were immunized through the intranasal route with house dust mite (HDM) extract derived from Dermatophagoides pteronyssinus. B cells were depleted in HDM-sensitized animals to investigate the importance of B cells in maintenance of the allergic response. B cells were depleted before HDM sensitization to investigate the role of B cells in T-cell priming; furthermore, HDM sensitization was performed in mice with MHC class II expression restricted to the B-cell lineage. RESULTS: We found that B cells serve as potent antigen-presenting cells ex vivo and restimulate in vivo-primed HDM-specific TH cells. HDM antigens were taken up by B cells independently of B-cell receptor specificity, indicating that HDM uptake and antigen presentation to CD4+ T cells is not restricted to rare B cells carrying HDM-specific B cell receptors. B-cell depletion before HDM challenge in HDM-sensitized mice resulted in a dramatic reduction of allergic response, indicating the role of B cells in amplification of TH2 responses. In contrast, HDM sensitization of mice in which MHC class II expression was restricted to B cells revealed the inability of these cells to prime TH2 responses but highlighted their unexpected role in priming TH1 and TH17 responses. CONCLUSION: Collectively, these data reveal new mechanisms leading to initiation and exacerbation of the allergic response that might have implications for designing new therapeutic strategies to combat HDM allergy.
Assuntos
Asma/imunologia , Linfócitos B/imunologia , Células Th2/imunologia , Alérgenos/imunologia , Animais , Formação de Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Antígenos de Dermatophagoides/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Dermatophagoides pteronyssinus/imunologia , Modelos Animais de Doenças , Feminino , Hipersensibilidade/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologiaRESUMO
Innate immune cells are integral to the pathogenesis of several diseases of the central nervous system (CNS), including multiple sclerosis (MS). Dendritic cells (DCs) are potent CD11c+ antigen-presenting cells that are critical regulators of adaptive immune responses, particularly in autoimmune diseases such as MS. The regulation of DC function in both the periphery and CNS compartment has not been fully elucidated. One limitation to studying the role of CD11c+ DCs in the CNS is that microglia can upregulate CD11c during inflammation, making it challenging to distinguish bone marrow-derived DCs (BMDCs) from microglia. Selective expression of microRNAs (miRNAs) has been shown to distinguish populations of innate cells and regulate their function within the CNS during neuro-inflammation. Using the experimental autoimmune encephalomyelitis (EAE) murine model of MS, we characterized the expression of miRNAs in CD11c+ cells using a non-biased murine array. Several miRNAs, including miR-31, were enriched in CD11c+ cells within the CNS during EAE, but not LysM+ microglia. Moreover, to distinguish CD11c+ DCs from microglia that upregulate CD11c, we generated bone marrow chimeras and found that miR-31 expression was specific to BMDCs. Interestingly, miR-31-binding sites were enriched in mRNAs downregulated in BMDCs that migrated into the CNS, and a subset was confirmed to be regulated by miR-31. Finally, miR-31 was elevated in DCs migrating through an in vitro blood-brain barrier. Our findings suggest miRNAs, including miR-31, may regulate entry of DCs into the CNS during EAE, and could potentially represent therapeutic targets for CNS autoimmune diseases such as MS.
Assuntos
Sistema Nervoso Central/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , MicroRNAs/imunologia , Esclerose Múltipla/imunologia , Animais , Células Dendríticas/citologia , Modelos Animais de Doenças , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8(+) T cells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. The proportion of these populations varied over time associated with changes in antigen availability as well as T cell expression of the inhibitory receptor PD1. Unexpectedly, the movement of infiltrating cells was closely associated with an infection-induced reticular system of fibers. This observation suggests that, whereas in other tissues pre-existing scaffolds exist that guide lymphocyte migration, in the brain specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment.
Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/imunologia , Toxoplasma/imunologia , Toxoplasmose Cerebral/imunologia , Toxoplasmose Cerebral/parasitologia , Animais , Sistema Nervoso Central/imunologia , Camundongos , Ratos , Toxoplasmose Cerebral/patologiaRESUMO
Regulatory T cells (Tregs) are a subset of CD4+ T cells with suppressive function and are critical for limiting inappropriate activation of T cells. Hence, the expansion of Tregs is an attractive strategy for the treatment of autoimmune diseases. Here, we demonstrate that the skin possesses the remarkable capacity to systemically expand Treg numbers by producing thymic stromal lymphopoietin (TSLP) in response to vitamin D receptor stimulation. An â¼2-fold increase in the proportion and absolute number of Tregs was observed in mice treated topically but not systemically with the Vitamin D3 analog MC903. This expansion of Tregs was dependent on TSLP receptor signaling but not on VDR signaling in hematopoietic cells. However, TSLP receptor expression by Tregs was not required for their proliferation. Rather, skin-derived TSLP promoted Treg expansion through dendritic cells. Importantly, treatment of skin with MC903 significantly lowered the incidence of autoimmune diabetes in non-obese diabetic mice and attenuated disease score in experimental autoimmune encephalomyelitis. Together, these data demonstrate that the skin has the remarkable potential to control systemic immune responses and that Vitamin D-mediated stimulation of skin could serve as a novel strategy to therapeutically modulate the systemic immune system for the treatment of autoimmunity.
Assuntos
Citocinas/metabolismo , Pele/imunologia , Pele/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Colecalciferol/análogos & derivados , Colecalciferol/farmacologia , Citocinas/farmacologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfopoietina do Estroma do TimoRESUMO
Myeloid-derived cells play important modulatory and effector roles in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells, composed of monocytic (MO) and polymorphonuclear (PMN) fractions, which can suppress T cell activities in EAE. Their role in MS remains poorly characterized. We found decreased numbers of circulating MDSCs, driven by lower frequencies of the MO-MDSCs, and higher MDSC expression of microRNA miR-223 in MS versus healthy subjects. To gain mechanistic insights, we interrogated the EAE model. MiR-223 knock out (miR-223-/-) mice developed less severe EAE with increased MDSC numbers in the spleen and spinal cord compared to littermate controls. MiR-223-/- MO-MDSCs suppressed T cell proliferation and cytokine production in vitro and EAE in vivo more than wild-type MO-MDSCs. They also displayed an increased expression of critical mediators of MDSC suppressive function, Arginase-1(Arg1), and the signal transducer and activator of transcription 3 (Stat3), which herein, we demonstrate being an miR-223 target gene. Consistently, MDSCs from MS patients displayed decreased STAT3 and ARG1 expression compared with healthy controls, suggesting that circulating MDSCs in MS are not only reduced in numbers but also less suppressive. These results support a critical role for miR-223 in modulating MDSC biology in EAE and in MS and suggest potential novel therapeutic applications.
Assuntos
Encefalomielite Autoimune Experimental/metabolismo , MicroRNAs/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Células Supressoras Mieloides/metabolismo , Animais , Arginase/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Contagem de Células , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Células Supressoras Mieloides/patologia , Fator de Transcrição STAT3/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Baço/metabolismo , Baço/patologia , Linfócitos T/metabolismo , Linfócitos T/patologiaRESUMO
B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell-depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.
Assuntos
Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Inflamação Neurogênica/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/patologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagemRESUMO
OBJECTIVE: Eotaxin is a chemokine that exerts negative effects on neurogenesis. We recently showed that peripheral eotaxin levels correlate with both lower gray matter volume and poorer executive performance in older adults with major depressive disorder. These findings suggest that the relationship between eotaxin and set-shifting may be accounted for by lower gray matter volume in specific regions. Prior studies have identified specific gray matter regions that correlate with set-shifting performance, but have not examined whether these specific gray matter regions mediate the cross-sectional association between eotaxin and set-shifting. METHOD: In 27 older adults (mean age: 68 ± 5.2 years) with major depressive disorder, we performed a whole brain (voxel-wise) analysis testing whether/where gray matter density statistically mediates the cross-sectional association of eotaxin and set-shifting performance. RESULTS: We found the association between eotaxin and set-shifting performance was fully statistically mediated by lower gray matter density in left middle cingulate, right pre-/post-central, lingual, inferior/superior frontal, cuneus, and middle temporal regions. CONCLUSION: The regions identified above may be both susceptible to a potential neurodegenerative effect of eotaxin, and critical to preserving set-shifting function. Longitudinal and intervention studies are needed to further evaluate whether targeting eotaxin levels will prevent neurodegeneration and executive impairment in older adults with depression. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Quimiocina CCL11/sangue , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/patologia , Substância Cinzenta/patologia , Idoso , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: Several immunological biomarkers are altered in late-life major depressive disorder (LLD). Immunological alterations could contribute to LLD's consequences, but little is known about the relations between specific immunological biomarkers and brain health in LLD. We performed an exploratory pilot study to identify, from several candidates, the specific immunological biomarkers related to important aspects of brain health that are altered in LLD (brain structure and executive function). METHODS: Adults (n = 31) were at least 60 years old and had major depressive disorder. A multiplex immunoassay assessed 13 immunological biomarkers, and we examined their associations with structural MRI (grey matter volume and white matter hyperintensity volume (WMH)) and executive function (Color-Word Interference and Trail-Making tests) measures. RESULTS: Vascular endothelial growth factor (VEGF) and the chemokine eotaxin had significant negative associations with grey matter volume (VEGF: n = 31, r = -0.65; eotaxin: n = 29, r = -0.44). Tumor necrosis factor alpha (TNF-α) had a significant positive relationship with WMHs (n = 30, r = 0.52); interferon-γ (IFN-γ) and macrophage inflammatory protein-1α (MIP-1α) were also significantly associated with WMHs (IFN-γ: n = 31, r = 0.48; MIP-1α: n = 29, r = 0.45). Only eotaxin was associated with executive function (set-shifting performance as measured with the Trail-making test: n = 33, r = -0.43). CONCLUSIONS: Immunological markers are associated with brain structure in LLD. We found the immunological correlates of grey and white matter differ. Prospective studies are needed to evaluate whether these immunological correlates of brain health increase the risk of LLD's consequences. Eotaxin, which correlated with both grey matter volume and set-shifting performance, may be particularly relevant to neurodegeneration and cognition in LLD. Copyright © 2016 John Wiley & Sons, Ltd.