RESUMO
Emerging evidence indicated that changes in DNA methylation early in breast cancer (BC) development might be clinically relevant for therapeutic decisions. Through analysis of whole-genome gene expression microarray and DNA methylation microarray, we explored genes with abnormal DNA methylation in BC for early detection. Firstly, human BC tissues and adjacent non-cancerous tissues were collected from nine BC patients. Gene expression microarray sequencing was conducted for identifying differentially expressed genes and DNA methylation microarray sequencing for differentially methylated genes in BC. Differentially expressed genes and methylated genes in BC were further explored using the Cancer Genome Atlas database. The correlation between DNA methylation and gene expression was illustrated by multiple comparisons. In other 60 clinical samples, methylation specific polymerase chain reaction (PCR) and reverse transcription quantitative PCR were applied for the methylation of HOXA4 and IGF1 genes in BC and adjacent non-cancerous tissues. In total, 1680 upregulated genes and 1249 downregulated genes were determined in BC. Chromosome 16 and 17 showed more differentially methylated genes, and DNA methylation level was increased in BC tissues in each gene region. Chromosome 19 showed more differentially methylated genes, and DNA methylation level was increased in BC tissues in the exoniensis 1, untranslated region-5 and transcriptional start site 200 gene regions. In other 60 clinical samples, HOXA4 and IGF1 in BC tissues presented increased DNA methylation and decreased gene expression in BC. MCF7 cells treated with RG108 showed decreased HOXA4 and IGF1 expressions. It was estimated that HOXA4 and IGF1 were identified with increased DNA methylation and decreased gene expression in BC, which may serve as biomarkers in early BC detection.