Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 169, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347517

RESUMO

BACKGROUND: ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. RESULTS: In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. CONCLUSION: This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Pyrus , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Pyrus/genética , Proteínas de Membrana Transportadoras/genética , Estresse Fisiológico/genética , Trifosfato de Adenosina , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas
2.
BMC Genomics ; 25(1): 794, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169310

RESUMO

BACKGROUND: PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS: In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS: These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Rosaceae , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosaceae/genética , Pyrus/genética , Arabidopsis/genética , Evolução Molecular , Sintenia , Família Multigênica
3.
Mol Breed ; 44(3): 18, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38390031

RESUMO

Cold shock domain proteins (CSPs), initially identified in Escherichia coli, have been demonstrated to play a positive role in cold resistance. Previous studies in wheat, rice, and Arabidopsis have indicated the functional conservation of CSPs in cold resistance between bacteria and higher plants. However, the biological functions of PbrCSPs in pear pollen tubes, which represent the fragile reproductive organs highly sensitive to low temperature, remain largely unknown. In this study, a total of 22 CSPs were identified in the seven Rosaceae species, with a focus on characterizing four PbrCSPs in pear (Pyrus bretschneideri Rehder). All four PbrCSPs were structurally conserved and responsive to the abiotic stresses, such as cold, high osmotic, and abscisic acid (ABA) treatments. PbrCSP1, which is specifically expressed in pear pollen tubes, was selected for further research. PbrCSP1 was localized in both the cytoplasm and nucleus. Suppressing the expression of PbrCSP1 significantly inhibited the pollen tube growth in vitro. Conversely, overexpression of PbrCSP1 promoted the growth of pear pollen tubes under the normal condition and, notably, under the cold environment at 4 °C. These findings highlight an essential role of PbrCSP1 in facilitating the normal growth and enhancing cold resistance in pear pollen tubes. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01457-w.

4.
Plant Physiol Biochem ; 207: 108342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219427

RESUMO

Respiratory burst oxidase homolog (Rboh) family genes play crucial functions in development and growth. However, comprehensive and systematic investigation of Rboh family members in Rosaceae and their specific functions during pear pollen development are still limited. In the study, 63 Rboh genes were identified from eight Rosaceae genomes (Malus domestica, Pyrus bretschneideri, Pyrus communis, Prunus persica, Rubus occidentalis, Fragaria vesca, Prunus mume and Prunus avium) and divided into seven main subfamilies (I-VII) according to phylogenetic and structural features. Different modes of gene duplication led to the expansion of Rboh family, with purifying selection playing a vital role in the evolution of Rboh genes. In addition, RNA sequencing and qRT-PCR results indicated that PbRbohH and PbRbohJ were specifically high-expressed in pear pollen. Subsequently, subcellular localization revealed that PbRbohH/J distributed at the plasma membrane. Furthermore, by pharmacological analysis and antisense oligodeoxynucleotide assay, PbRbohH/J were demonstrated to mediate the formation of reactive oxygen species (ROS) to manage pollen tube growth. In conclusion, our results provide useful insights into the functions, expression patterns, evolutionary history of the Rboh genes in pear and other Rosaceae species.


Assuntos
Pyrus , Rosaceae , Pyrus/genética , Pyrus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tubo Polínico/genética , Filogenia , Genoma de Planta , Rosaceae/genética
5.
Hortic Res ; 11(5): uhae090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799129

RESUMO

Environmental disasters like drought reduce agricultural output and plant growth. Redox management significantly affects plant stress responses. An earlier study found that PbPIP1;4 transports H2O2 and promotes H2O2 downstream cascade signaling to restore redox equilibrium. However, this regulatory mechanism requires additional investigation. In this search, the AP2 domain-containing transcription factor was isolated by screening Y1H from the wild pear (Pyrus betulaefolia) cDNA library, named PbERF3. The overexpression of PbERF3 in pear callus and Arabidopsis enhanced plant resistance to drought and re-established redox balance. The transcripts of the NCEDs gene were upregulated under drought stress. The drought stress-related abscisic acid (ABA) signaling pathway modulates PbERF3. PbERF3 silencing lowered drought tolerance. Furthermore, yeast 2-hybrid, luciferase, bimolecular fluorescence complementation, and co-immunoprecipitation assays verified that PbERF3 physically interacted with PbHsfC1a. The PbERF3-PbHsfC1a heterodimer coordinately bound to PbPIP1;4 and PbNCED4 promoter, therefore activating both the H2O2 and the ABA signaling pathway. This work revealed a novel PbERF3-PbHsfC1a-PbNCED4-PbPIP1;4 regulatory module, in which PbERF3 interacts with PbHsfC1a to trigger the expression of target genes. This module establishes an interaction between the H2O2 signaling component PbPIP1;4 and the ABA pathways component PbNCED4, enabling a response to drought.

6.
Int J Biol Macromol ; 278(Pt 2): 134640, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142484

RESUMO

The successful germination of pollen is essential for double fertilization in flowering plants. Mechanosensitive channels of small conductance (MscS-like, MSL) inhibit pollen germination and maintains cellular integrity of pollen during this process. Therefore, it is vital to carefully regulate the expression of MSL to promote successful pollen germination. Despite its importance, the molecular mechanisms governing MSL expression in plants remain poorly understood. Here, we had identified 15 MSL genes in the pear, among which PbrMSL5 was expressed in pollen development. Subcellular localization experiments revealed that PbrMSL5 was located in both plasma membrane and cytoplasm. Functional investigations, including complementation experiments using the atmsl8 mutant background, demonstrated the involvement of PbrMSL5 in preserving pollen cell integrity and inhibiting germination. Antisense oligonucleotide experiments further confirmed that PbrMSL5 suppressed pear pollen germination by reducing osmotic pressure and Cl- content. Yeast one-hybrid, electrophoretic mobility shift assays, and dual luciferase reporter assay elucidated that PbrMYC8 interacts directly with the N-box element, leading to the suppression of PbrMSL5 expression and promoted pollen germination. These results represented a significant advancement in unraveling the molecular mechanisms controlling plant MSL expression. This study showed valuable contribution to advancing our comprehension of the mechanism underlying pollen germination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA