Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biomed Chromatogr ; 36(10): e5442, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35781817

RESUMO

The active components and mechanisms of tea cake extract (TCE) were investigated for treating cough. The components of TCE were tentatively identified by ultrahigh-performance liquid chromatography coupled with Q-Exactive MS/MS (UPLC-QE-MS/MS), whose targets were obtained from the Swiss Target Prediction database and the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. Cough-related targets were retrieved from the Gene Cards and Online Mendelian Inheritance in Man database. After the intersection targets had been obtained, enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined, and the protein-protein interaction network and active compound-intersection target-KEGG pathway network were constructed. Core active compounds and their targets were validated with molecular docking. A total of 78 compounds were identified from TCE, including 24 flavonoids, 17 phenolic acids, 10 alkaloids, seven organic acids, five triterpenes, five amino acids, five coumarins, three carbohydrates, one anthraquinone and one other. A total of 347 intersection targets were obtained. The top five GO terms with the most significant P-values were responses to oxygen-containing compounds and organic substances, chemical and cellular responses to chemical stimulus, and regulation of biological quality. The top five KEGG pathways with the most significant P-values were: the PI3K-Akt signaling pathway, lipids and atherosclerosis, human cytomegalovirus infection, fluid shear stress and atherosclerosis, and proteoglycans in cancer. The top five core active compounds were quercetin, genistein, luteolin, kaempferol and emodin. The top five core targets were protein kinase B (Akt1), prostaglandin-endoperoxide synthase 2 (PTGS2), mitogen-activated protein kinase 1/3 (MAPK1/3) and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1). The top five core active compounds could stably bind to their targets with LibDockScores higher than 100. Tea cake extract plays the antitussive role via multiple components and targets. Core targets (AKT1, MAPK1, MAPK3 and PIK3R1) and core components (quercetin, genistein, luteolin and kaempferol) involved in the PI3K-Akt signaling pathway are worth more attention in subsequent validation experiments.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Cromatografia Líquida , Tosse , Medicamentos de Ervas Chinesas/química , Genisteína , Humanos , Quempferóis , Luteolina , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina , Espectrometria de Massas em Tandem , Chá
2.
Pharmazie ; 74(2): 67-72, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782253

RESUMO

Psoralidin, a prenylated coumestrol isolated from the seed of a traditional Chinese medicine Psoralea corylifolia L., has been demonstrated to exhibit anti-inflammatory, anti-cancer, anti-oxidative, estrogenic, neuroprotective, anti-bacterial, and anti-parasite activities. Due to prenylation, psoralidin exhibits stronger estrogenic activity with no obvious adverse effects and shows a close association with management of osteoporosis and some cancers. However, the hydrophobicity and low bioavailability of psoralidin limit its clinical application, although recent investigation has gained valuable data. This review will discuss the biological activities of psoralidin in health.


Assuntos
Benzofuranos/farmacologia , Cumarínicos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Benzofuranos/química , Benzofuranos/uso terapêutico , Cumarínicos/química , Cumarínicos/uso terapêutico , Estrogênios/química , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
3.
Cell Physiol Biochem ; 47(1): 279-292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768255

RESUMO

BACKGROUND/AIMS: P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. METHODS: Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. RESULTS: Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. CONCLUSIONS: AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Ativação Transcricional/efeitos dos fármacos
4.
Connect Tissue Res ; 59(2): 157-166, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28436754

RESUMO

AIM OF THE STUDY: To investigate the roles of endoplasmic reticulum (ER) transmembrane sensor inositol-requiring enzyme-1 (IRE1)α signaling in ER stress-induced chondrocyte apoptosis, and to determine the molecular mechanisms underlying chondroprotective activity of 5,7,3',4'-tetramethoxyflavone (TMF) from Murraya exotica. MATERIALS AND METHODS: IRE1α was knocked down by siRNA transfection in chondrocytes, which were harvested from rats' knee cartilages. Chondrocytes with IRE1α deficiency were administrated with tunicamycin (TM) and TMF. Chondrocyte apoptosis was quantified by flow cytometry and DAPI/TUNEL staining. Expression of mRNA and proteins was quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western-blot, respectively. RESULTS: IRE1α deficiency significantly increased the rate of TM-induced chondrocyte apoptosis, down-regulated the expression of pro-survival factors XBP1S and Bcl-2, and up-regulated pro-apoptotic factors CHOP, p-JNK, and caspase-3. TMF suppressed TM-induced chondrocyte apoptosis by activating the expression of IRE1α, which reversed the expression patterns of downstream pro-survival and pro-apoptotic factors due to IRE1α deficiency. CONCLUSION: The mechanism of TMF in protecting chondrocytes against ER stress-induced apoptosis might be associated with regulating the activity of ER sensor IRE1α and its downstream pathway.


Assuntos
Apoptose/efeitos dos fármacos , Condrócitos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Luteolina/farmacologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/genética , Células Cultivadas , Condrócitos/citologia , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Complexos Multienzimáticos/genética , Proteínas Serina-Treonina Quinases/genética , Ratos , Transdução de Sinais/genética
5.
Cell Physiol Biochem ; 44(4): 1445-1459, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190615

RESUMO

Glycogen synthase kinase-3ß (GSK-3ß), a serine/threonine protein kinase, has been reported to show essential roles in molecular pathophysiology of many diseases. Mitochondrion is a dynamic organelle for producing cellular energy and determining cell fates. Stress-induced translocated GSK-3ß may interact with mitochondrial proteins, including PI3K-Akt, PGC-1α, HK II, PKCε, components of respiratory chain, and subunits of mPTP. Mitochondrial pool of GSK-3ß has been implicated in mediation of mitochondrial functions. GSK-3ß exhibits the regulatory effects on mitochondrial biogenesis, mitochondrial bioenergetics, mitochondrial permeability, mitochondrial motility, and mitochondrial apoptosis. The versatile functions of GSK-3ß might be associated with its wide range of substrates. Accumulative evidence demonstrates that GSK-3ß inactivation may be potentially developed as the promising strategy in management of many diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Intensive efforts have been made for exploring GSK-3ß inhibitors. Natural products provide us a great source for screening new lead compounds in inactivation of GSK-3ß. The key roles of GSK-3ß in mediation of mitochondrial functions are discussed in this review.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/química , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo
6.
Int J Mol Sci ; 18(5)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471397

RESUMO

Glucocorticoid administration is the leading cause of secondary osteoporosis. In this study, we tested the hypotheses that histone deacetylase 4 (HDAC4) is associated with glucocorticoid-induced bone loss and that HDAC4 dependent bone loss can be ameliorated by miRNA-365. Our previous studies showed that miR-365 mediates mechanical stimulation of chondrocyte proliferation and differentiation by targeting HDAC4. However, it is not clear whether miR-365 has an effect on glucocorticoid-induced osteoporosis. We have shown that, in MC3T3-E1 osteoblasts, dexamethasone (DEX) treatment decreased the expression of miR-365, which is accompanied by the decrease of cell viability in a dose-dependent manner. Transfection of miR-365 ameliorated DEX-induced inhibition of MC3T3-E1 cell viability and alkaline phosphatase activity, and attenuated the suppressive effect of DEX on runt-related transcription factor 2 (Runx2), osteopontin (OPN), and collagen 1a1 (Col1a1) osteogenic gene expression. In addition, miR-365 decreased the expression of HDAC4 mRNA and protein by direct targeting the 3'-untranslated regions (3'-UTR) of HDAC4 mRNA in osteoblasts. MiR-365 increased Runx2 expression and such stimulatory effect could be reversed by HDAC4 over-expression in osteoblasts. Collectively, our findings indicate that miR-365 ameliorates DEX-induced suppression of cell viability and osteogenesis by regulating the expression of HDAC4 in osteoblasts, suggesting miR-365 might be a novel therapeutic agent for treatment of glucocorticoid-induced osteoporosis.


Assuntos
Histona Desacetilases/genética , MicroRNAs/genética , Osteogênese , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dexametasona/farmacologia , Histona Desacetilases/metabolismo , Camundongos , MicroRNAs/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteopontina/genética , Osteopontina/metabolismo
7.
Biochem Biophys Res Commun ; 452(3): 682-8, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25193704

RESUMO

Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. This study is the first report which demonstrates the cartilage protective effect of 5,7,3',4'-tetramethoxyflavone (TMF) by decreasing the concentration of IL-1ß, TNF-α and PGE2 in the knee synovial fluid in OA rat models in vivo. In vitro, after induced by PGE2, the apoptosis rate of chondrocytes was significantly increased. In addition, PGE2 increased the expression of cAMP/PKA signaling pathway in chondrocytes, stabilized and accumulated ß-catenin, and activated the expression of ß-catenin signaling pathway. These activities were counteracted by TMF dose-dependently. Collectively, TMF is a potential compound with chondroprotective activity by inhibiting both EP/cAMP/PKA signaling pathway and ß-catenin signaling pathway.


Assuntos
Condrócitos/efeitos dos fármacos , Flavonoides/farmacologia , Luteolina/farmacologia , Osteoartrite/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Líquido Sinovial/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Cultura Primária de Células , Ratos , Líquido Sinovial/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
J Orthop Surg Res ; 19(1): 179, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468352

RESUMO

BACKGROUND: Cholesterol (CHO) is an essential component of the body. However, high CHO levels in the body can damage bone mass and promote osteoporosis. CHO accumulation can cause osteoblast apoptosis, which has a negative effect on bone formation. The pathogenesis of osteoporosis is a complicate process that includes oxidative stress, endoplasmic reticulum (ER) stress, and inflammation. Geniposide (GEN) is a natural compound with anti-osteoporotic effect. However, the roles of GEN in osteopathogenesis are still unclear. Our previous studies demonstrated that GEN could reduce the accumulation of CHO in osteoblasts and the activation of ER stress in osteoblasts. However, the molecular mechanism of GEN in inhibiting CHO-induced apoptosis in osteoblasts needs to be further investigated. METHODS: MC3T3-E1 cells were treated with osteogenic induction medium (OIM). Ethanol-solubilized cholesterol (100 µM) was used as a stimulator, and 10 µM and 25 µM geniposide was added for treatment. The alterations of protein expression were detected by western blot, and the cell apoptosis was analyzed by a flow cytometer. RESULTS: CHO promoted osteoblast apoptosis by activating ER stress in osteoblasts, while GEN alleviated the activation of ER stress and reduced osteoblast apoptosis by activating the GLP-1R/ABCA1 pathway. Inhibition of ABCA1 or GLP-1R could eliminate the protective activity of GEN against CHO-induced ER stress and osteoblast apoptosis. CONCLUSION: GEN alleviated CHO-induced ER stress and apoptosis in osteoblasts by mediating the GLP-1R/ABCA1 pathway.


Assuntos
Iridoides , Osteoblastos , Osteoporose , Humanos , Osteoblastos/metabolismo , Osteoporose/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/farmacologia
9.
Exp Ther Med ; 28(1): 283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38800044

RESUMO

Osteoarthritis (OA) is a disease of the joints, characterized by chronic inflammation, cartilage destruction and extracellular matrix (ECM) remodeling. Aberrant chondrocyte hypertrophy promotes cartilage destruction and OA development. Collagen X, the biomarker of chondrocyte hypertrophy, is upregulated by runt-related transcription factor 2 (Runx2), which is mediated by the bone morphogenetic protein 4 (BMP4)/Smad1 signaling pathway. BMP binding endothelial regulator (BMPER), a secreted glycoprotein, acts as an agonist of BMP4. 5,7,3',4'-tetramethoxyflavone (TMF) is a natural flavonoid derived from Murraya exotica L. Results of our previous study demonstrated that TMF exhibits chondroprotective effects against OA development through the activation of Forkhead box protein O3a (FOXO3a) expression. However, whether TMF suppresses chondrocyte hypertrophy through activation of FOXO3a expression and inhibition of BMPER/BMP4/Smad1 signaling remains unknown. Results of the present study revealed that TMF inhibited collagen X and Runx2 expression, inhibited BMPER/BMP4/Smad1 signaling, and activated FOXO3a expression; thus, protecting against chondrocyte hypertrophy and OA development. However, BMPER overexpression and FOXO3a knockdown impacted the protective effects of TMF. Thus, TMF inhibited chondrocyte hypertrophy in OA cartilage through mediating the FOXO3a/BMPER signaling pathway.

10.
Biomed Pharmacother ; 174: 116501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554527

RESUMO

Osteoarthritis (OA) is a chronic joint disease, characterized by degenerative destruction of articular cartilage. Chondrocytes, the unique cell type in cartilage, mediate the metabolism of extracellular matrix (ECM), which is mainly constituted by aggrecan and type II collagen. A disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) is an aggrecanase responsible for the degradation of aggrecan in OA cartilage. CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor in the C/EBP family, has been reported to mediate the expression of ADAMTS5. Our previous study showed that 5,7,3',4'-tetramethoxyflavone (TMF) could activate the Sirt1/FOXO3a signaling in OA chondrocytes. However, whether TMF protected against ECM degradation by down-regulating C/EBPß expression was unknown. In this study, we found that aggrecan expression was down-regulated, and ADAMTS5 expression was up-regulated. Knockdown of C/EBPß could up-regulate aggrecan expression and down-regulate ADAMTS5 expression in IL-1ß-treated C28/I2 cells. TMF could compromise the effects of C/EBPß on OA chondrocytes by activating the Sirt1/FOXO3a signaling. Conclusively, TMF exhibited protective activity against ECM degradation by mediating the Sirt1/FOXO3a/C/EBPß pathway in OA chondrocytes.


Assuntos
Proteína ADAMTS5 , Proteína beta Intensificadora de Ligação a CCAAT , Condrócitos , Matriz Extracelular , Osteoartrite , Transdução de Sinais , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Masculino , Sirtuína 1/metabolismo , Agrecanas/metabolismo , Flavonoides/farmacologia , Interleucina-1beta/metabolismo , Linhagem Celular , Proteína Forkhead Box O3/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Regulação para Baixo/efeitos dos fármacos
11.
J Asian Nat Prod Res ; 15(11): 1168-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24147784

RESUMO

Two new schisdilactone-type compounds, respectively, named schisdilactone H (1) and schisdilactone I (2), were isolated from the stems of Schisandra chinensis. The structures and absolute configurations of these new compounds were elucidated by extensive spectroscopic analysis as well as time-dependent density functional theory electronic circular dichroism calculations.


Assuntos
Schisandra/química , Triterpenos/isolamento & purificação , Dicroísmo Circular , Cristalografia por Raios X , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Caules de Planta/química , Estereoisomerismo , Triterpenos/química
12.
Biomed Pharmacother ; 169: 115938, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38000353

RESUMO

Inflammation, a mechanism of the human body, has been implicated in many diseases. Inflammatory responses include the release of inflammatory mediators by activating various signaling pathways. CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor in the C/EBP family, contains the leucine zipper (bZIP) domain. The expression of C/EBPß is mediated at the transcriptional and post-translational levels, such as phosphorylation, acetylation, methylation, and SUMOylation. C/EBPß has been involved in inflammatory responses by mediating several signaling pathways, such as MAPK/NF-κB and IL-6/JAK/STAT3 pathways. C/EBPß plays an important role in the pathological development of inflammation-related diseases, such as osteoarthritis, pneumonia, hepatitis, inflammatory bowel diseases, and rheumatoid arthritis. Here, we comprehensively discuss the structure and biological effects of C/EBPß and its role in inflammatory diseases.


Assuntos
Regulação da Expressão Gênica , NF-kappa B , Humanos , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Inflamação
13.
Biomed Pharmacother ; 153: 113296, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724511

RESUMO

Acteoside (AC), a phenylpropanoid glycoside isolated from many dicotyledonous plants, has been demonstrated various pharmacological activities, including anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, hepatoprotection, and anti-microorganism. However, AC has a poor bioavailability, which can be potentially improved by different strategies. The health-promoting characteristics of AC can be attributed to its mediation in many signaling pathways, such as MAPK, NF-κB, PI3K/AKT, TGFß/Smad, and AMPK/mTOR. Interestingly, docking simulation study indicates that AC can be an effective candidate to inhibit the activity of SARS-CoV2 main protease and protect against COVID-19. Many clinical trials for AC have been investigated, and it shows great potentials in drug development.


Assuntos
Tratamento Farmacológico da COVID-19 , Fosfatidilinositol 3-Quinases , Glucosídeos , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Polifenóis , RNA Viral , SARS-CoV-2
14.
Biomed Pharmacother ; 155: 113829, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271582

RESUMO

Long-term exposure to glucocorticoid (GC) contributes to the development of osteoporosis (OP), which is correlated with the risk of fracture. Pathologically, GC-induced bone loss is associated with osteoblast apoptosis. Geniposide (GEN), a natural occurring compound derived from Eucommia ulmoides, has been reported to ameliorate dexamethasone (DEX)-induced OP. Our previous study shows that GEN exhibits protective activity against DEX-induced OP by attenuating endoplasmic reticulum stress and decreasing apoptosis in osteoblasts. However, the molecular mechanisms of GEN in inhibiting DEX-induced osteoblast apoptosis still need further elucidation. In this article, a molecular target network of GEN against OP was screened. It was found that GEN might interact with OP by mediating PI3K/AKT pathway, which is the upstream factor in regulating autophagy. GEN exhibited protective activity against DEX-induced apoptosis by activating autophagy in vivo and in vitro. Blockage of autophagy, activation of PI3K/AKT/mTOR pathway, or inhibition of GLP-1R activity could eliminate the protective effects of GEN against DEX-induced apoptosis. Collectively, GEN ameliorated DEX-induced osteoblast apoptosis by activating autophagy through GLP-1R/PI3K/AKT/mTOR pathway.


Assuntos
Glucocorticoides , Osteoporose , Humanos , Glucocorticoides/efeitos adversos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dexametasona/toxicidade , Osteoblastos , Apoptose , Autofagia , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139457

RESUMO

7-Ketocholesterol (7KC) is one of the oxysterols produced by the auto-oxidation of cholesterol during the dysregulation of cholesterol metabolism which has been implicated in the pathological development of osteoporosis (OP). Oxiapoptophagy involving oxidative stress, autophagy, and apoptosis can be induced by 7KC. However, whether 7KC produces negative effects on MC3T3-E1 cells by stimulating oxiapoptophagy is still unclear. In the current study, 7KC was found to significantly decrease the cell viability of MC3T3-E1 cells in a concentration-dependent manner. In addition, 7KC decreased ALP staining and mineralization and down-regulated the protein expression of OPN and RUNX2, inhibiting osteogenic differentiation. 7KC significantly stimulated oxidation and induced autophagy and apoptosis in the cultured MC3T3-E1 cells. Pretreatment with the anti-oxidant acetylcysteine (NAC) could effectively decrease NOX4 and MDA production, enhance SOD activity, ameliorate the expression of autophagy-related factors, decrease apoptotic protein expression, and increase ALP, OPN, and RUNX2 expression, compromising 7KC-induced oxiapoptophagy and osteogenic differentiation inhibition in MC3T3-E1 cells. In summary, 7KC may induce oxiapoptophagy and inhibit osteogenic differentiation in the pathological development of OP.


Assuntos
Osteogênese , Oxisteróis , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core , Cetocolesteróis/farmacologia , Oxisteróis/farmacologia , Superóxido Dismutase
17.
J Ethnopharmacol ; 291: 115154, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35240241

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eucommia ulmoides Oliver has been traditionally used for treatment of various diseases, including osteoporosis, knee pain, and paralysis. The extract of Eucommia ulmoides has been reported to stimulate the bone formation and suppress the bone resorption, leading to protection against osteoporosis (OP). Geniposide (GEN) has been considered as one of the effective compounds responsible for the therapeutic efficacy of Eucommia ulmoides against OP. AIM OF THE STUDY: To explore whether GEN protected against dexamethasone (DEX)-induced osteoporosis (OP) by activating NRF2 expression and inhibiting endoplasmic reticulum (ER) stress. MATERIALS AND METHODS: The DEX-induced rat OP models were duplicated. The pathological changes were examined by histological/immunohistochemical evaluation and micro-computed tomography (micro-CT) assessment. Apoptosis was detected by a flow cytometer. Mitochondrial Ca2+ concentrations and mitochondrial membrane potential were detected. Western blot assays were used to detect the protein expression. RESULTS: GEN effectively reversed DEX-induced pathological changes of trabecular bone in rats. In addition, the DEX-increased expression of ATF4/CHOP was also ameliorated. In MC3T3-E1 cells, DEX promoted endoplasmic reticulum (ER) stress and mitochondrial apoptosis. Inhibition of ER stress abolished the induction of apoptosis by DEX. Similarly, GEN significantly ameliorated DEX-induced mitochondrial apoptosis. The possible underlying mechanism might be associated with the pharmacological effects of GEN on activating the expression of NRF2 and alleviating ER stress in DEX-treated MC3T3-E1 cells. CONCLUSION: GEN ameliorated DEX-induced ER stress and mitochondrial apoptosis in osteoblasts.


Assuntos
Dexametasona , Estresse do Retículo Endoplasmático , Animais , Apoptose , Linhagem Celular , Dexametasona/toxicidade , Iridoides , Osteoblastos , Ratos , Transdução de Sinais , Microtomografia por Raio-X
18.
Front Psychiatry ; 12: 696015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366926

RESUMO

Bilingualism has been reported to significantly delay the onset of dementia and plays an important role in the management of Alzheimer's disease (AD), a condition inducing impairment in the brain network and cognitive decline. Cognitive reserve is associated with the adaptive maintenance of neural functions by protecting against neuropathology. Bilingualism acts as a beneficial environmental factor contributing to cognitive reserve, although some potential confounding variables still need further elucidation. In this article, the relationship between bilingualism and cognitive reserve is discussed, interpreting the advantage of bilingualism in protecting against cognitive decline. In addition, the possible brain and biochemical mechanisms, supporting the advantageous effects of bilingualism in delaying the onset of dementia, involved in bilingualism are reviewed. Effectively, bilingualism can be considered as a pharmacological intervention with no side effects. However, the investigation of the pharmacological parameters of bilingualism is still at an early stage.

19.
Future Med Chem ; 13(23): 2083-2105, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34633220

RESUMO

Transthyretin (TTR) is associated with several human amyloid diseases. Various kinetic stabilizers have been developed to inhibit the dissociation of TTR tetramer and the formation of amyloid fibrils. Most of them are bisaryl derivatives, natural flavonoids, crown ethers and carborans. In this review article, we focus on TTR tetramer stabilizers, genetic therapeutic approaches and fibril remodelers. The binding modes of typical bisaryl derivatives, natural flavonoids, crown ethers and carborans are discussed. Based on knowledge of the binding of thyroxine to TTR tetramer, many stabilizers have been screened to dock into the thyroxine binding sites, leading to TTR tetramer stabilization. Particularly, those stabilizers with unique binding profiles have shown great potential in developing the therapeutic management of TTR amyloidogenesis.


Assuntos
Amiloide/antagonistas & inibidores , Compostos de Boro/farmacologia , Éteres de Coroa/farmacologia , Desenvolvimento de Medicamentos , Flavonoides/farmacologia , Pré-Albumina/antagonistas & inibidores , Amiloide/metabolismo , Compostos de Boro/química , Éteres de Coroa/química , Flavonoides/química , Humanos , Pré-Albumina/metabolismo
20.
Future Med Chem ; 13(7): 613-623, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33527844

RESUMO

Aim: To investigate whether kaempferol exhibits a protective effect on high glucose-induced epithelial-mesenchymal transition (EMT) by mediating the PVT1/miR-214 and PAK4/ß-catenin pathways in SRA01/04 cells. Methods & methods: qRT-PCR and western blot assays were used for gene and protein determination, and migration and invasion assays were conducted. A coimmunoprecipitation assay was used for determining protein interactions. Results: High glucose effectively upregulated PVT1 expression, downregulated miR-214 expression and promoted cell migration and invasion. Kaempferol attenuated high glucose-induced EMT by increasing PVT1 expression and decreasing miR-214 expression. PAK4 was identified as a direct target of miR-214. PAK4 overexpression could rescue the effects of PVT1 deficiency on SRA01/04 cells. Conclusion: Kaempferol ameliorated the regulatory effects of PVT1/miR-214 on high glucose-induced EMT through PAK4/ß-catenin in SRA01/04 cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Quempferóis/farmacologia , MicroRNAs/antagonistas & inibidores , RNA Longo não Codificante/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Quinases Ativadas por p21/antagonistas & inibidores , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA