Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568969

RESUMO

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , DNA/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , RNA/metabolismo
2.
J Neurosci ; 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680412

RESUMO

The need to sleep is sensed and discharged in a poorly understood process that is homeostatically controlled over time. In flies, different contributions to this process have been attributed to peripheral ppk and central brain neurons, with the former serving as hypothetical inputs to the sleep homeostat and the latter reportedly serving as the homeostat itself. Here we re-evaluate these distinctions in light of new findings using female flies. First, activating neurons targeted by published ppk and brain drivers elicits similar phenotypes - namely sleep deprivation followed by rebound sleep. Second, inhibiting activity or synaptic output with one type of driver suppresses sleep homeostasis induced using the other type of driver. Third, drivers previously used to implicate central neurons in sleep homeostasis unexpectedly also label ppk neurons. Fourth, activating only this subset of co-labeled neurons is sufficient to elicit sleep homeostasis. Thus, many published contributions of central neurons to sleep homeostasis can be explained by previously unrecognized expression of brain drivers in peripheral ppk neurons, most likely those in the legs that promote walking. Lastly, we show that activation of certain non-ppk neurons can also induce sleep homeostasis. Notably, axons of these as well as ppk neurons terminate in the same ventral brain region, suggesting that a previously undefined neural circuit element of a sleep homeostat may lie nearby.SIGNIFICANCE STATEMENT:The biological need(s) that sleep fulfills are unknown, but they are reflected by an animal's ability to compensate for prior sleep loss in a process called sleep homeostasis. Researchers have searched for the neural circuitry that comprises the sleep homeostat so that the information it conveys can shed light on the nature of sleep need. Here we demonstrate that neurons originating outside of the brain are responsible for phenotypes previously attributed to the proposed central brain sleep homeostat in flies. Our results support a revised neural circuit model for sensing and discharging sleep need in which peripheral inputs connect to a sleep homeostat through previously unrecognized neural circuit elements in the ventral brain.

3.
Ann Surg ; 278(5): e988-e994, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37309899

RESUMO

OBJECTIVES: We aimed to determine the current incidence rate and risk factors for surgical site infection (SSI) after abdominal surgery in China and to further demonstrate the clinical features of patients with SSI. BACKGROUND: Contemporary epidemiology and clinical features of SSI after abdominal surgery remain poorly characterized. METHODS: A prospective multicenter cohort study was conducted from March 2021 to February 2022; the study included patients who underwent abdominal surgery at 42 hospitals in China. Multivariable logistic regression analysis was performed to identify risk factors for SSI. Latent class analysis (LCA) was used to explore the population characteristics of SSI. RESULTS: In total, 23,982 patients were included in the study, of whom 1.8% developed SSI. There was a higher SSI incidence in open surgery (5.0%) than in laparoscopic or robotic surgeries (0.9%). Multivariable logistic regression indicated that the independent risk factors for SSI after abdominal surgery were older age, chronic liver disease, mechanical bowel preparation, oral antibiotic bowel preparation, colon or pancreas surgery, contaminated or dirty wounds, open surgery, and colostomy/ileostomy. LCA revealed 4 subphenotypes in patients undergoing abdominal surgery. Types α and ß were mild subclasses with a lower SSI incidence; whereas types γ and δ were the critical subgroups with a higher SSI incidence, but their clinical features were different. CONCLUSIONS: LCA identified 4 subphenotypes in patients who underwent abdominal surgery. Types γ and δ were critical subgroups with a higher SSI incidence. This phenotype classification can be used to predict SSI after abdominal surgery.


Assuntos
Laparoscopia , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Estudos Prospectivos , Estudos de Coortes , Laparoscopia/efeitos adversos , Fatores de Risco , Incidência
4.
BMC Biol ; 20(1): 108, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35550070

RESUMO

BACKGROUND: Cannabinoids and their derivatives attract strong interest due to the tremendous potential of their psychoactive effects for treating psychiatric disorders and symptoms. However, their clinical application is restricted by various side-effects such as impaired coordination, anxiety, and learning and memory disability. Adverse impact on dorsal striatum-dependent learning is an important side-effect of cannabinoids. As one of the most important forms of learning mediated by the dorsal striatum, reinforcement learning is characterized by an initial association learning phase, followed by habit learning. While the effects of cannabinoids on habit learning have been well-studied, little is known about how cannabinoids influence the initial phase of reinforcement learning. RESULTS: We found that acute activation of cannabinoid receptor type 1 (CB1R) by the synthetic cannabinoid HU210 induced dose-dependent impairment of association learning, which could be alleviated by intra-dorsomedial striatum (DMS) injection of CB1R antagonist. Moreover, acute exposure to HU210 elicited enhanced synaptic transmission in striatonigral "direct" pathway medium spiny neurons (MSNs) but not indirect pathway neurons in DMS. Intriguingly, enhancement of synaptic transmission that is also observed after learning was abolished by HU210, indicating cannabinoid system might disrupt reinforcement learning by confounding synaptic plasticity normally required for learning. Remarkably, the impaired response-reinforcer learning was also induced by selectively enhancing the D1-MSN (MSN that selectively expresses the dopamine receptor type 1) activity by virally expressing excitatory hM3Dq DREADD (designer receptor exclusively activated by a designer drug), which could be rescued by specifically silencing the D1-MSN activity via hM4Di DREADD. CONCLUSION: Our findings demonstrate dose-dependent deleterious effects of cannabinoids on association learning by disrupting plasticity change required for learning associated with the striatal direct pathway, which furthers our understanding of the side-effects of cannabinoids and the underlying mechanisms.


Assuntos
Canabinoides , Aprendizagem por Associação , Canabinoides/metabolismo , Canabinoides/farmacologia , Corpo Estriado/metabolismo , Humanos , Neurônios/fisiologia , Transmissão Sináptica
5.
J Neurosci ; 41(41): 8461-8474, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34446574

RESUMO

α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain where they promote fast cholinergic synaptic transmission and serve important neuromodulatory functions. However, their high permeability to Ca2+ also predisposes them to contribute to disease states. Here, using transfected HEK-tsa cells and primary cultured hippocampal neurons from male and female rats, we demonstrate that two proteins called Ly6h and NACHO compete for access to α7 subunits, operating together but in opposition to maintain α7 assembly and activity within a narrow range that is optimal for neuronal function and viability. Using mixed gender human temporal cortex and cultured hippocampal neurons from rats we further show that this balance is perturbed during Alzheimer's disease (AD) because of amyloid ß (Aß)-driven reduction in Ly6h, with severe reduction leading to increased phosphorylated tau and α7-mediated neurotoxicity. Ly6h release into human CSF is also correlated with AD severity. Thus, Ly6h links cholinergic signaling, Aß and phosphorylated tau and may serve as a novel marker for AD progression.SIGNIFICANCE STATEMENT One of the earliest and most persistent hypotheses regarding Alzheimer's disease (AD) attributes cognitive impairment to loss of cholinergic signaling. More recently, interest has focused on crucial roles for amyloid ß (Aß) and phosphorylated tau in Alzheimer's pathogenesis. Here, we demonstrate that these elements are linked by Ly6h and its counterpart, NACHO, functioning in opposition to maintain assembly of nicotinic acetylcholine receptors (nAChRs) within the physiological range. Our data suggests that Aß shifts the balance away from Ly6h and toward NACHO, resulting in increased assembly of Ca2+-permeable nAChRs and thus a conversion of basal cholinergic to neurotoxic signaling.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Células Cultivadas , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Lobo Temporal/metabolismo , Lobo Temporal/patologia
6.
Learn Behav ; 50(3): 267-268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35618985

RESUMO

Smith et al. in Nature Communications, 12, 5121, (2021) provided evidence to challenge the simple dichotomy that learning of actions and expression of habitual behaviors are processed separately in dorsomedial (DMS) and dorsolateral striatum (DLS) by demonstrating that D2 receptor-expressing medium spiny neurons (D2-MSNs) in anterior DLS could modulate newly learned action, except for its involvement in the expression of habitual actions. Here we review recent advances and introduce a valuable addition to the traditional hypothesis by taking into account the common ligand of D1 and D2 neurons, dopamine.


Assuntos
Corpo Estriado , Receptores de Dopamina D2 , Animais , Corpo Estriado/metabolismo , Hábitos , Neurônios/fisiologia , Receptores de Dopamina D2/metabolismo
7.
BMC Microbiol ; 21(1): 130, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910503

RESUMO

BACKGROUND: The coral microbiome plays a key role in host health by being involved in energy metabolism, nutrient cycling, and immune system formation. Inoculating coral with beneficial bacterial consortia may enhance the ability of this host to cope with complex and changing marine environments. In this study, the coral Pocillopora damicornis was inoculated with a beneficial microorganisms for corals (BMC) consortium to investigate how the coral host and its associated microbial community would respond. RESULTS: High-throughput 16S rRNA gene sequencing revealed no significant differences in bacterial community α-diversity. However, the bacterial community structure differed significantly between the BMC and placebo groups at the end of the experiment. Addition of the BMC consortium significantly increased the relative abundance of potentially beneficial bacteria, including the genera Mameliella and Endozoicomonas. Energy reserves and calcification rates of the coral host were also improved by the addition of the BMC consortium. Co-occurrence network analysis indicated that inoculation of coral with the exogenous BMC consortium improved the physiological status of the host by shifting the coral-associated microbial community structure. CONCLUSIONS: Manipulating the coral-associated microbial community may enhance the physiology of coral in normal aquarium conditions (no stress applied), which may hypothetically contribute to resilience and resistance in this host.


Assuntos
Antozoários/microbiologia , Biodiversidade , Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota/fisiologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética
8.
Ecotoxicology ; 30(4): 622-631, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33830384

RESUMO

The pressure-state-response (PSR) model was applied to establish a mangrove ecosystem health evaluation system combined with analytical hierarchy process (AHP) in this paper. The mangrove wetlands are divided into five ecological levels: excellent health, good health, health, sub-health and morbidity, which is based on the comprehensive health index (CHI) value. Twelve representative sites were selected for sampling to assess the ecological health condition of mangroves. As a result, the ecological health level of Gaoqiao mangrove area is excellent health; the ecological health level of Taiping mangrove area is good health; the ecological health level of Huguang and Qi'ao mangrove area is health; the ecological health level of Techeng and He'an mangrove area is sub-health; the ecological health level of Huidong mangrove area is morbidity. These results will give some advises for ecological protection and biological resource sustainable development of mangrove ecosystem in China.


Assuntos
Ecossistema , Áreas Alagadas , China
9.
Ecotoxicology ; 30(9): 1808-1815, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34269924

RESUMO

In this study, Illumina MiSeq sequencing of the 16 S rRNA gene was used to describe the bacterial communities in the South China Sea (SCS) during the southwest monsoon period. We targeted different regions in the SCS and showed that bacterial community was driven by the effects of the river, upwelling, and mesoscale eddy through changing the environmental factors (salinity, temperature, and nutrients). Distinct bacterial communities were observed among different chemical conditions, especially between the estuary and the open sea. The abundance of Burkholderiales, Frankiales, Flavobacteriales, and Rhodobacterales dominated the estuary and its adjacent waters. Bacteria in cyclonic eddy were dominated by Methylophilales and Pseudomonadales, whereas Prochlorococcus, SAR11 clade, and Oceanospirillales had relatively high abundance in the anticyclonic eddy. Overall, the abundance of specific phylotypes significantly varied among samples with different chemical conditions. Chemical conditions probably act as a driver that shapes and controls the diversity of bacteria in the SCS. This study suggests that the interaction between microbial and environmental conditions needs to be further considered to fully understand the diversity and function of marine microbes.


Assuntos
Bactérias , Água do Mar , Bactérias/genética , China , Estuários , Oceanos e Mares , Filogenia , Rios
10.
Ecotoxicology ; 29(6): 684-690, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394359

RESUMO

Tidal flooding can directly result in oxygen (O2) shortage, however the functions of root aeration in flooding tolerance and O2 dynamics within mangroves are still poorly understood. Thus, in this study, the correlations among waterlogging tolerance, root porosity and O2 movement within the plants were investigated using two mangrove species (Aegiceras corniculatum and Bruguiera gymnorrhiza) and a semi-mangrove Heritiera littoralis. Based on the present data, the species A. corniculatum and B. gymnorrhiza, which possessed higher root porosity, exhibited higher waterlogging tolerance, while H. littoralis is intolerant. Increased root porosity, leaf stoma, and total ROL were observed in the roots of A. corniculatum and B. gymnorrhiza growing in stagnant solution when compared to respective aerated controls. As for ROL spatial pattern along roots, external anaerobic condition could promote ROL from apical root regions but reduce ROL from basal roots, leading to a 'tighter barrier'. In summary, the present study indicated that the plants (e.g., A. corniculatum and B. gymnorrhiza) prioritized to ensure O2 diffusion towards root tips under waterlogging by increasing aerenchyma formation and reducing O2 leakage at basal root regions.


Assuntos
Primulaceae , Rhizophoraceae , Áreas Alagadas , Eutrofização , Oxigênio/metabolismo , Raízes de Plantas/fisiologia
11.
Ecotoxicology ; 29(6): 691-697, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472470

RESUMO

A short term pot trail was employed to evaluate the exposure of mixed heavy metals (Cu, Pb and Zn) on growth, radial oxygen loss (ROL) and root anatomy in Bruguiera gymnorrhiza. The possible function of BgC4H, a cytochrome P450 gene, on root lignification was also discussed. The exposures of mixed Cu, Pb and Zn directly reduce O2 leakage at root surface. The reduced ROL inhibited by heavy metals was mainly ascribed by the changes in root anatomical features, such as decreased root porosity together with increased lignification within the exodermis. BgC4H was found to be up-regulated after 0.5-day metal exposure, and remained higher transcript levels within 3-day metal exposure when compared to control roots. Besides, the inhibited photosynthesis may also result in less oxygen can be transported to the underground roots. In summary, the mangrove B. gymnorrhiza appeared to react to external mixed metal contaminants by developing a lignified and impermeable exodermis, and such a root barrier induced by mixed Cu, Pb and Zn appeared to be an adaptive response to block metal ions enters into the roots.


Assuntos
Metais Pesados/toxicidade , Oxigênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Rhizophoraceae , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Cobre , Chumbo , Raízes de Plantas/fisiologia , Zinco
12.
Ecotoxicology ; 29(6): 762-770, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32342292

RESUMO

Sediment quality caused by heavy metals was investigated in the Mirs Bay and Tolo Harbor, Hong Kong, China. Samples were collected in January and July, 2010. One-way analysis of variance showed that sediment quality variables (Fe, Zn, Mn, Pb, V, Cu, Cr, Ba, Ni and As) were significantly different (p < 0.05) among the sampling areas, whereas the average concentration of V, Eh and Ba exhibited the significant seasonal variations (p < 0.05) between January and July. The spatial pattern of heavy metals (Pb, Zn and Cu) can probably be attributed to anthropogenic and tidal flushing influence in the harbor. Both geo-accumulation index (Igeo) and enrichment factor (EF) were used to identify the metal pollution level and its related source. Pb, Zn, and Cu are considered as "polluted metal" in Tolo Harbor. Cluster analysis (CA) identified three distinct clusters with the Tolo Habor and Shatou Jiao, the inner bay and the south part of the bay. Principal component analysis (PCA) identified the spatial patterns and their affected parameters in the studying area. Results showed metals distribution in Mirs Bay and its adjacent area is principally affected by human activities such as marineculture, dumping, located mostly in Tolo Harbor and Shatou Jiao, where was closely related with anthropogenic influence. While the monitoring stations including MS13-MS16 and MS8 locating in the south part of the studying area might be corresponded to natural influence.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise , Baías , China , Análise por Conglomerados , Poluição Ambiental , Sedimentos Geológicos , Hong Kong , Análise de Componente Principal
13.
Ecotoxicology ; 29(6): 751-761, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32189146

RESUMO

Daya Bay is facing the influence of human activities and nature changes, which result in phytoplankton adjusting to the changing environment. The data about environmental changes and phytoplankton were obtained from four seasonal cruises in 2013 in the bay. It is helpful to explore seasonal succession of phytoplankton driven by the determining environmental factors in this bay. Temperature is a significant indicator of season change. The limiting factor of phytoplankton growth totally changed from P (PO4-P) limiting during the southwest monsoon to Si (SiO3-Si) limiting during northeast monsoon. The order of diatoms and dinoflagellates was the dominant phytoplankton groups in Daya Bay. The dominant species included chain-forming diatoms (Skeletonema, Pseudo-nitzschia, Thalassionema, Chaetoceros and Rhizosolenia) were found all the year round and filamentous cyanobacteria (Trichodesmium) in spring and autumn. Partial least square regression (PLS) found that salinity, temperature and nutrients were important driving force for phytoplankton seasonal succession.


Assuntos
Monitoramento Ambiental , Fitoplâncton , Baías , China , Cianobactérias , Diatomáceas , Dinoflagellida , Meio Ambiente , Análise dos Mínimos Quadrados , Salinidade , Estações do Ano , Temperatura
14.
J Neurosci ; 35(8): 3420-30, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716842

RESUMO

α7 nAChRs are expressed widely throughout the brain, where they are important for synaptic signaling, gene transcription, and plastic changes that regulate sensory processing, cognition, and neural responses to chronic nicotine exposure. However, the mechanisms by which α7 nAChRs are regulated are poorly understood. Here we show that trafficking of α7-subunits is controlled by endogenous membrane-associated prototoxins in the Ly6 family. In particular, we find that Ly6h reduces cell-surface expression and calcium signaling by α7 nAChRs. We detect Ly6h in several rat brain regions, including the hippocampus, where we find it is both necessary and sufficient to limit the magnitude of α7-mediated currents. Consistent with such a regulatory function, knockdown of Ly6h in rat hippocampal pyramidal neurons enhances nicotine-induced potentiation of glutamatergic mEPSC amplitude, which is known to be mediated by α7 signaling. Collectively our data suggest a novel cellular role for Ly6 proteins in regulating nAChRs, which may be relevant to plastic changes in the nervous system including rewiring of glutamatergic circuitry during nicotine addiction.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Potenciação de Longa Duração , Glicoproteínas de Membrana/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Células Cultivadas , Ácido Glutâmico/farmacologia , Células HEK293 , Hipocampo/citologia , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Dados de Sequência Molecular , Agonistas Nicotínicos/farmacologia , Transporte Proteico , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia
15.
J Biol Chem ; 290(40): 24509-18, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276394

RESUMO

α4ß2 nicotinic acetylcholine receptors (nAChRs) are abundantly expressed throughout the central nervous system and are thought to be the primary target of nicotine, the main addictive substance in cigarette smoking. Understanding the mechanisms by which these receptors are regulated may assist in developing compounds to selectively interfere with nicotine addiction. Here we report previously unrecognized modulatory properties of members of the Ly6 protein family on α4ß2 nAChRs. Using a FRET-based Ca(2+) flux assay, we found that the maximum response of α4ß2 receptors to agonist was strongly inhibited by Ly6h and Lynx2 but potentiated by Ly6g6e. The mechanisms underlying these opposing effects appear to be fundamentally distinct. Receptor inhibition by Lynx2 was accompanied by suppression of α4ß2 expression at the cell surface, even when assays were preceded by chronic exposure of cells to an established chaperone, nicotine. Receptor inhibition by Lynx2 also was resistant to pretreatment with extracellular phospholipase C, which cleaves lipid moieties like those that attach Ly6 proteins to the plasma membrane. In contrast, potentiation of α4ß2 activity by Ly6g6e was readily reversible by pretreatment with phospholipase C. Potentiation was also accompanied by slowing of receptor desensitization and an increase in peak currents. Collectively our data support roles for Lynx2 and Ly6g6e in intracellular trafficking and allosteric potentiation of α4ß2 nAChRs, respectively.


Assuntos
Antígenos Ly/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuropeptídeos/metabolismo , Receptores Nicotínicos/metabolismo , Sítio Alostérico , Animais , Biotinilação , Cálcio/química , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipídeos/química , Camundongos , Nicotina/química , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Ligação Proteica , Transporte Proteico , Fumar/efeitos adversos , Fosfolipases Tipo C/metabolismo
17.
Ecotoxicology ; 24(7-8): 1632-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25847104

RESUMO

In this study, artificial neural network such as a self-organizing map (SOM) was used to assess for the effects caused by climate change and human activities on the water quality in Daya Bay, South China Sea. SOM has identified the anthropogenic effects and seasonal characters of water quality. SOM grouped the four seasons as four groups (winter, spring, summer and autumn). The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on the water quality in Daya Bay. Spatial pattern is mainly related to anthropogenic activities and hydrodynamics conditions. In spatial characteristics, the water quality in Daya Bay was divided into two groups by chemometrics. The monitoring stations (S3, S8, S10 and S11) were in these area (Dapeng Ao, Aotou Harbor) and northeast parts of Daya Bay, which are areas of human activity. The thermal pollution has been observed near water body in Daya Bay Nuclear Power Plant (S5). The rest of the monitoring sites were in the south, central and eastern parts of Daya Bay, which are areas that experience water exchanges from South China Sea. The results of this study may provide information on the spatial and temporal patterns in Daya Bay. Further research will be carry out more research concerning functional changes in the bay ecology with respect to changes in climatic factor, human activities and bay morphology in Daya Bay.


Assuntos
Monitoramento Ambiental/métodos , Temperatura Alta , Redes Neurais de Computação , Água do Mar/análise , Poluição da Água/análise , China , Hidrodinâmica , Centrais Nucleares , Estações do Ano , Qualidade da Água
18.
Ecotoxicology ; 24(7-8): 1643-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26040842

RESUMO

The Pearl River delta, one of the most prosperous economically region in China, has experienced significant contaminant inputs. However, the dynamics of pollutants in the Pearl River estuary and the adjacent coastal areas are still unclear at present. In the paper, distribution and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in the surface sediments of the Pearl River estuary. The total PAHs concentrations ranged from 126.08 to 3828.58 ng/g with a mean value of 563.52 ng/g, whereas the highest PAHs were observed in Guangzhou channel. Among the U.S. Environmental Protection Agency's 16 priority PAHs, PAHs with 3-4 rings exhibited relative higher levels. A positive relationship was found between PAHs and total organic carbon. The source analysis further showed that the major sources of PAHs in the Pearl River estuary were originated from the pyrolytic inputs, reflecting a mixed energy structure such as wood, coal and petroleum combustion. In summary, although PAHs in Lingding Bay and the adjacent coastal areas of the Pearl River estuary exhibited a relatively low pollution level, the relatively high pollution level of PAHs in Guangzhou channel will be attended.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , China
19.
Ecotoxicology ; 24(7-8): 1442-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26002220

RESUMO

The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.


Assuntos
Biota , Meio Ambiente , Fitoplâncton/fisiologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , China , Estuários , Dados de Sequência Molecular , Filogenia , Fitoplâncton/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Análise de Sequência de DNA , Análise Espacial
20.
Ecotoxicology ; 24(7-8): 1611-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25957975

RESUMO

Estuaries play an important role in the removal of overloading nitrogen to relieve the eutrophic pressure of coastal seawater. However, the exact amount of nitrogen removed in estuarine ecosystems is difficult to be estimated because of the complex dynamic mixing process between riverine water and coastal seawater. In this study, a new method was developed to calculate the removal rate of dissolved inorganic nitrogen (DIN) in estuarine waters attributed to the mixing process and was based on the assumption that relative salinity can serve as an indicator of the degree of mixing. This assumption was supported by the experimental results that demonstrated a linear regression relationship between DIN decline and salinity increase Thus, the decreased amount of DIN in mixing waters attributed to the dilution effect could be determined with the salinity as an index. With this model, the DIN removal rate in both Chesapeake Bay and Pearl River Estuary were defined. As predicted, our analysis demonstrated that the DIN removal rate increased gradually from upstream to downstream in both studied estuaries with obvious seasonable variation pattern: high in warm seasons and low in cold seasons. The practical application of this method might be affected by multiple factors, including the geographic landform of estuaries, initial estuaries DIN concentration, the DIN concentration in seawater, DIN importing from tributaries, sewage discharge and hydrodynamic mixing. Therefore, the results supported the hypothesis that estuaries have a strong capability to remove the nitrogen inputted from human activities, especially in warm season and therefore should play an important role in regulating the balance of global nitrogen biogeochemical cycle.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Nitrogênio/análise , Salinidade , Poluentes Químicos da Água/análise , Modelos Teóricos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA