Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891808

RESUMO

AP2/ERF transcription factor genes play an important role in regulating the responses of plants to various abiotic stresses, such as cold, drought, high salinity, and high temperature. However, less is known about the function of oil palm AP2/ERF genes. We previously obtained 172 AP2/ERF genes of oil palm and found that the expression of EgAP2.25 was significantly up-regulated under salinity, cold, or drought stress conditions. In the present study, the sequence characterization and expression analysis for EgAP2.25 were conducted, showing that it was transiently over-expressed in Nicotiana tabacum L. The results indicated that transgenic tobacco plants over-expressing EgAP2.25 could have a stronger tolerance to salinity stress than wild-type tobacco plants. Compared with wild-type plants, the over-expression lines showed a significantly higher germination rate, better plant growth, and less chlorophyll damage. In addition, the improved salinity tolerance of EgAP2.25 transgenic plants was mainly attributed to higher antioxidant enzyme activities, increased proline and soluble sugar content, reduced H2O2 production, and lower MDA accumulation. Furthermore, several stress-related marker genes, including NtSOD, NtPOD, NtCAT, NtERD10B, NtDREB2B, NtERD10C, and NtP5CS, were significantly up-regulated in EgAP2.25 transgenic tobacco plants subjected to salinity stress. Overall, over-expression of the EgAP2.25 gene significantly enhanced salinity stress tolerance in transgenic tobacco plants. This study lays a foundation for further exploration of the regulatory mechanism of the EgAP2.25 gene in conferring salinity tolerance in oil palm.


Assuntos
Arecaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Arecaceae/genética , Arecaceae/metabolismo , Germinação/genética , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338758

RESUMO

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Assuntos
Arecaceae , Peróxido de Hidrogênio , Catalase/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Genes (Basel) ; 15(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39336716

RESUMO

Triglycerides are the main storage form of oil in plant seeds. Both fatty acids and triglycerides possess important functions in the process of plant growth and development. To improve the seed oil content and improve its fatty acid composition, this paper analyzed the research progress on the oil regulation and synthesis metabolism process of plant seeds and summarized the strategies for the improvement of plant seed oil: (a) To regulate carbon distribution by inhibiting the expression of genes encoding key enzymes, allocating carbon sources into the protein synthesis pathway, and enhancing the expression of key genes encoding key enzymes, leading carbon sources into the synthesis pathway of fatty acids; (b) To intervene in lipid synthesis by promoting the biosynthesis of fatty acids and improving the expression level of key genes encoding enzymes in the triacylglycerol (TAG) assembly process; (c) To improve seed oil quality by altering the plant fatty acid composition and regulating the gene expression of fatty acid desaturase, as well as introducing an exogenous synthesis pathway of long chain polyunsaturated fatty acids; (d) To regulate the expression of transcription factors for lipid synthesis metabolism to increase the seed oil content. In addition, this article reviews the key enzymes involved in the biosynthesis of plant fatty acids, the synthesis of triacylglycerol, and the regulation process. It also summarizes the regulatory roles of transcription factors such as WRI, LEC, and Dof on the key enzymes during the synthesis process. This review holds significant implications for research on the genetic engineering applications in plant seed lipid metabolism.


Assuntos
Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Óleos de Plantas , Sementes , Triglicerídeos , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Triglicerídeos/biossíntese , Triglicerídeos/genética , Triglicerídeos/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Ácidos Graxos/genética , Plantas/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo dos Lipídeos/genética , Plantas Geneticamente Modificadas/genética
4.
Food Chem (Oxf) ; 8: 100190, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38259870

RESUMO

Sugar and fatty acid content are among the important factors that contribute to the intensity of flavor in aromatic coconut. Gaining a comprehensive understanding of the sugar and fatty acid metabolites in the flesh of aromatic coconuts, along with identifying the key synthetic genes, is of significant importance for improving the development of desirable character traits in these coconuts. However, the related conjoint analysis of metabolic targets and molecular synthesis mechanisms has not been carried out in aromatic coconut until now. UPLC-MS/MS combined with RNA-Seq were performed in aromatic coconut (AC) and non-aromatic coconut (NAC) meat at 7, 9 and 11 months. The results showed that D-fructose in AC coconut meat was 3.48, 2.56 and 3.45 fold higher than that in NAC coconut meat. Similarly, D-glucose in AC coconut meat was 2.48, 2.25 and 3.91 fold higher than that in NAC coconut meat. The NAC coconut meat showed a 1.22-fold rise in the content of lauric acid compared to the AC coconut meat when it reached 11 months of age. Myristic acid content in NAC coconut meat was 1.47, 1.44 and 1.13 fold higher than that in AC coconut meat. The palmitic acid content in NAC coconut meat was 1.62 and 1.34 fold higher than that in AC coconut meat. The genes SPS, GAE, GALE, GLCAK, UGE, UGDH, FBP, GMLS, PFK, GPI, RHM, ACC, FabF, FatA, FabG, and FabI exhibited a negative correlation with D-fructose (r = -0.81) and D-glucose (r = -0.99) contents, while showing a positive correlation (r = 0.85-0.96) with lauric acid and myristic acid. Furthermore, GALE, GLCAK, FBP, GMLS, and ACC displayed a positive correlation (r = 0.83-0.94) with palmitic acid content. The sugar/organic acid ratio exhibited a positive correlation with SPS, GAE, UGE, FabF, FabZ and FabI.

5.
Int J Biol Macromol ; 280(Pt 1): 135699, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39288860

RESUMO

Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.

6.
Metabolites ; 13(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367885

RESUMO

The fruit of the oil palm (Elaeis guineensis Jacq.) has fleshy mesocarpic tissue rich in lipids. This edible vegetable oil is economically and nutritionally significant across the world. The core concepts of oil biosynthesis in oil palms remain to be researched as the knowledge of oil biosynthesis in plants improves. In this study, we utilized a metabolite approach and mass spectral analysis to characterize metabolite changes and identify the sequences of protein accumulation during the physiological processes that regulate oil synthesis during oil palm fruit ripening. Here, we performed a comprehensive lipidomic data analysis in order to understand the role of lipid metabolism in oil biosynthesis mechanisms. The experimental materials were collected from the mesocarp of oil palm (Tenera) at 95 days (early accumulation of fatty acid, first stage), 125 days (rapid growth of fatty acid accumulation, second stage), and 185 days (stable period of fatty acid accumulation, third stage) after pollination. To gain a clear understanding of the lipid changes that occurred during the growth of the oil palm, the metabolome data were found using principal component analysis (PCA). Furthermore, the accumulations of diacylglycerols, ceramides, phosphatidylethanolamine, and phosphatidic acid varied between the developmental stages. Differentially expressed lipids were successfully identified and functionally classified using KEGG analysis. Proteins related to the metabolic pathway, glycerolipid metabolism, and glycerphospholipid metabolism were the most significantly changed proteins during fruit development. In this study, LC-MS analysis and evaluation of the lipid profile in different stages of oil palm were performed to gain insight into the regulatory mechanisms that enhance fruit quality and govern differences in lipid composition and biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA