Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Cancer Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992984

RESUMO

Uveal melanoma (UM) patients face a significant risk of distant metastasis, closely tied to a poor prognosis. Despite this, there is a dearth of research utilizing big data to predict UM distant metastasis. This study leveraged machine learning methods on the Surveillance, Epidemiology, and End Results (SEER) database to forecast the risk probability of distant metastasis. Therefore, the information on UM patients from the SEER database (2000-2020) was split into a 7:3 ratio training set and an internal test set based on distant metastasis presence. Univariate and multivariate logistic regression analyses assessed distant metastasis risk factors. Six machine learning methods constructed a predictive model post-feature variable selection. The model evaluation identified the multilayer perceptron (MLP) as optimal. Shapley additive explanations (SHAP) interpreted the chosen model. A web-based calculator personalized risk probabilities for UM patients. The results show that nine feature variables contributed to the machine learning model. The MLP model demonstrated superior predictive accuracy (Precision = 0.788; ROC AUC = 0.876; PR AUC = 0.788). Grade recode, age, primary site, time from diagnosis to treatment initiation, and total number of malignant tumors were identified as distant metastasis risk factors. Diagnostic method, laterality, rural-urban continuum code, and radiation recode emerged as protective factors. The developed web calculator utilizes the MLP model for personalized risk assessments. In conclusion, the MLP machine learning model emerges as the optimal tool for predicting distant metastasis in UM patients. This model facilitates personalized risk assessments, empowering early and tailored treatment strategies.

2.
Technol Cancer Res Treat ; 23: 15330338231219352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233736

RESUMO

Background: Although gastric adenocarcinoma (GA) related ocular metastasis (OM) is rare, its occurrence indicates a more severe disease. We aimed to utilize machine learning (ML) to analyze the risk factors of GA-related OM and predict its risks. Methods: This is a retrospective cohort study. The clinical data of 3532 GA patients were collected and randomly classified into training and validation sets in a ratio of 7:3. Those with or without OM were classified into OM and non-OM (NOM) groups. Univariate and multivariate logistic regression analyses and least absolute shrinkage and selection operator were conducted. We integrated the variables identified through feature importance ranking and further refined the selection process using forward sequential feature selection based on random forest (RF) algorithm before incorporating them into the ML model. We applied six ML algorithms to construct the predictive GA model. The area under the receiver operating characteristic (ROC) curve indicated the model's predictive ability. Also, we established a network risk calculator based on the best performance model. We used Shapley additive interpretation (SHAP) to identify risk factors and to confirm the interpretability of the black box model. We have de-identified all patient details. Results: The ML model, consisting of 13 variables, achieved an optimal predictive performance using the gradient boosting machine (GBM) model, with an impressive area under the curve (AUC) of 0.997 in the test set. Utilizing the SHAP method, we identified crucial factors for OM in GA patients, including LDL, CA724, CEA, AFP, CA125, Hb, CA153, and Ca2+. Additionally, we validated the model's reliability through an analysis of two patient cases and developed a functional online web prediction calculator based on the GBM model. Conclusion: We used the ML method to establish a risk prediction model for GA-related OM and showed that GBM performed best among the six ML models. The model may identify patients with GA-related OM to provide early and timely treatment.


Assuntos
Adenocarcinoma , Neoplasias Oculares , Neoplasias Gástricas , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Algoritmos , Aprendizado de Máquina
3.
PLoS One ; 19(8): e0305468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110691

RESUMO

OBJECTIVE: The objective of this study was to identify the risk factors that influence metastasis and prognosis in patients with nodular melanoma (NM), as well as to develop and validate a prognostic model using artificial intelligence (AI) algorithms. METHODS: The Surveillance, Epidemiology, and End Results (SEER) database was queried for 4,727 patients with NM based on the inclusion/exclusion criteria. Their clinicopathological characteristics were retrospectively reviewed, and logistic regression analysis was utilized to identify risk factors for metastasis. This was followed by employing Multilayer Perceptron (MLP), Adaptive Boosting (AB), Bagging (BAG), logistic regression (LR), Gradient Boosting Machine (GBM), and eXtreme Gradient Boosting (XGB) algorithms to develop metastasis models. The performance of the six models was evaluated and compared, leading to the selection and visualization of the optimal model. Through integrating the prognostic factors of Cox regression analysis with the optimal models, the prognostic prediction model was constructed, validated, and assessed. RESULTS: Logistic regression analyses identified that marital status, gender, primary site, surgery, radiation, chemotherapy, system management, and N stage were all independent risk factors for NM metastasis. MLP emerged as the optimal model among the six models (AUC = 0.932, F1 = 0.855, Accuracy = 0.856, Sensitivity = 0.878), and the corresponding network calculator (https://shimunana-nm-distant-m-nm-m-distant-8z8k54.streamlit.app/) was developed. The following were examined as independent prognostic factors: MLP, age, marital status, sequence number, laterality, surgery, radiation, chemotherapy, system management, T stage, and N stage. System management and surgery emerged as protective factors (HR < 1). To predict 1-, 3-, and 5-year overall survival (OS), a nomogram was created. The validation results demonstrated that the model exhibited good discrimination and consistency, as well as high clinical usefulness. CONCLUSION: The developed prediction model more effectively reflects the prognosis of patients with NM and differentiates between the risk level of patients, serving as a useful supplement to the classical American Joint Committee on Cancer (AJCC) staging system and offering a reference for clinically stratified individualized treatment and prognosis prediction. Furthermore, the model enables clinicians to quantify the risk of metastasis in NM patients, assess patient survival, and administer precise treatments.


Assuntos
Inteligência Artificial , Melanoma , Humanos , Melanoma/patologia , Melanoma/mortalidade , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Estudos Retrospectivos , Metástase Neoplásica , Programa de SEER , Adulto , Algoritmos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/terapia , Modelos Logísticos
4.
J Orthop Surg Res ; 19(1): 112, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308336

RESUMO

PURPOSE: This research aimed to develop a machine learning model to predict the potential risk of prolonged length of stay in hospital before operation, which can be used to strengthen patient management. METHODS: Patients who underwent posterior spinal deformity surgery (PSDS) from eleven medical institutions in China between 2015 and 2022 were included. Detailed preoperative patient data, including demographics, medical history, comorbidities, preoperative laboratory results, and surgery details, were collected from their electronic medical records. The cohort was randomly divided into a training dataset and a validation dataset with a ratio of 70:30. Based on Boruta algorithm, nine different machine learning algorithms and a stack ensemble model were trained after hyperparameters tuning visualization and evaluated on the area under the receiver operating characteristic curve (AUROC), precision-recall curve, calibration, and decision curve analysis. Visualization of Shapley Additive exPlanations method finally contributed to explaining model prediction. RESULTS: Of the 162 included patients, the K Nearest Neighbors algorithm performed the best in the validation group compared with other machine learning models (yielding an AUROC of 0.8191 and PRAUC of 0.6175). The top five contributing variables were the preoperative hemoglobin, height, body mass index, age, and preoperative white blood cells. A web-based calculator was further developed to improve the predictive model's clinical operability. CONCLUSIONS: Our study established and validated a clinical predictive model for prolonged postoperative hospitalization duration in patients who underwent PSDS, which offered valuable prognostic information for preoperative planning and postoperative care for clinicians. Trial registration ClinicalTrials.gov identifier NCT05867732, retrospectively registered May 22, 2023, https://classic. CLINICALTRIALS: gov/ct2/show/NCT05867732 .


Assuntos
Algoritmos , Hospitais , Humanos , Estudos de Coortes , Tempo de Internação , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA