Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 491, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193047

RESUMO

BACKGROUND: Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. However, the underlying molecular mechanisms remain to be elucidated. Mucosal proteome might reflect dietary influences on physiological processes. RESULTS: A total of 128 white Pekin ducks of one-day-old were randomly assigned to two groups, fed either a PAD or a pantothenic acid adequate (control, CON) diet. After a 16-day feeding period, two ducks from each replicate were sampled to measure plasma parameters, intestinal morphology, and mucosal proteome. Compared to the CON group, high mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were up-regulated and 223 proteins were down-regulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Selected proteins were confirmed by Western blotting. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were up-regulated by PAD, probably indicates reduced intestinal integrity. CONCLUSION: PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings provide insights into the mechanisms of intestinal hypofunction induced by PAD.


Assuntos
Patos , Proteoma , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Mucosa Intestinal , Ácido Pantotênico
2.
Mol Ecol ; 30(6): 1477-1491, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33372351

RESUMO

Avian egg coloration is shaped by natural selection, but its genetic basis remains unclear. Here, we used genome-wide association analysis and identity by descent to finely map green egg colour to a 179-kb region of Chr4 based on the resequencing of 352 ducks (Anas platyrhynchos) from a segregating population resulting from the mating of Pekin ducks (white-shelled eggs) and mallards (green-shelled eggs). We further narrowed the candidate region to a 30-kb interval by comparing genome divergence in seven indigenous duck populations. Among the genes located in the finely mapped region, only one transcript of the ABCG2 gene (XM_013093252.2) exhibited higher uterine expression in green-shelled individuals than in white-shelled individuals, as supported by transcriptome data from four populations. ABCG2 has been reported to encode a protein that functions as a membrane transporter for biliverdin. Sanger sequencing of the whole 30-kb candidate region (Chr4: 47.41-47.44 Mb) and a plasmid reporter assay helped to identify a single nucleotide polymorphism (Chr4: 47,418,074 G>A) located in a conserved predicted promoter region whose variation may alter ABCG2 transcription activity. We provide a useful molecular marker for duck breeding and contribute data to the research on ecological evolution based on egg colour patterns among birds.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Patos , Óvulo , Polimorfismo de Nucleotídeo Único , Animais , Cor , Patos/genética , Estudo de Associação Genômica Ampla/veterinária , Proteínas de Neoplasias , Pigmentação/genética , Sequências Reguladoras de Ácido Nucleico
3.
Chaos ; 28(11): 113117, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501227

RESUMO

This paper concerns p th moment exponential stability of stochastic coupled systems with multiple time-varying delays, and Markovian switching topologies via intermittent control. Compared with previous research results, the mathematical model of this kind of stochastic coupled systems with multiple time-varying delays and Markovian switching topologies is studied for the first time. The intermittent control designed in this paper is aperiodical, which is more general in practice. Moreover, the restriction between control width and time delays is removed. By constructing a new differential inequality on delayed dynamical systems with Markovian switching topologies and combining the graph-theoretic approach with M-matrix theory, two sufficient criteria are derived to guarantee p th moment exponential stability of systems. Moreover, the exponential convergence rate has a close relationship with the maximum ratio of the rest width to the aperiodical time span (the sum of the control width and the rest width). Finally, we employ the theoretical results to study the exponential stability of stochastic coupled oscillators with multiple time-varying delays and Markovian switching topologies. Meanwhile, a numerical example is presented to illustrate the effectiveness and feasibility of the proposed results.

4.
Poult Sci ; 103(3): 103374, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295495

RESUMO

The aim of the experiment was to evaluate the status of innate immunity, oxidative status and lipid accumulation in ducklings exhibiting varying susceptibilities to DHAV-3 infection. In the experiment, ducklings with different DHAV-3 susceptibilities were used. Samples were collected at 6, 12, 15, and 24 h post infection (hpi), with 5 samples per time point. Plasma biochemistry, antioxidant enzyme activities, lipid content of liver and kidney were detected in the experiment. Elevated plasma level of total bilirubin, direct bilirubin, and creatinine indicated the injury of liver and kidney in susceptible ducklings (P < 0.05). The histopathological sections showed the injury in kidney. During the infection time, there was an increase in the concentrations of reactive oxygen species and oxidative damage markers (malondialdehyde and nitric oxide) in plasma of susceptible ducklings, particularly at 24 hpi (P < 0.05). Compared with the resistant ducklings, DHAV-3 infection resulted in a significant increase in the plasma total triglyceride (TG) level and a decrease in glucose level in susceptible ducklings. Gene expression of the innate immune response was both investigated in liver and kidney. In resistant ducklings, the expressions levels of pattern recognition receptors RIG-I, MDA5 remained constant. In contrast, the gene expressions peaked at 24 hpi in the susceptible ducklings. DHAV-3 infection promoted the expression of IFN, IL6, IL12ß, caspase-8 or caspase-9 in both liver and kidney of susceptible ducklings. In conclusion, DHAV-3 infection led to the mobilization of antioxidant defenses, alterations in lipid metabolism, and oxidative stress in susceptible ducklings during DHAV-3 infection.


Assuntos
Antioxidantes , Patos , Animais , Metabolismo dos Lipídeos , Galinhas , Imunidade Inata , Suscetibilidade a Doenças/veterinária , Bilirrubina , Lipídeos
5.
Foods ; 12(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36673379

RESUMO

The objective was to determine the effects of supplementing duck diets with Eucommia ulmoides oliv. leaf powder (EUL). Laying ducks (n = 480) were randomly allocated into 4 experimental treatments and fed diets containing 0, 1, 2, or 4% EUL. Dietary inclusion of EUL had no effect (p > 0.05) on laying performance or egg quality, but linearly increased (p < 0.05) total plasma protein, globulin, and HDL-C concentrations with concurrent reductions (p < 0.05) in plasma concentrations of cholesterol and LDL-C. Eggs laid by ducks receiving EUL had yolks with linearly higher phenolic concentrations (p < 0.05) but lower cholesterol concentrations (p < 0.05). EUL supplementation in duck diets significantly reduced n-6: n-3 PUFA ratio by enriching n-3 fatty acids in yolks (p < 0.05) with no changes in n-6 PUFA (p >0.05).

6.
Anim Nutr ; 12: 215-226, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36712406

RESUMO

This study was to determine the effects of riboflavin deficiency (RD) on intestinal development, jejunum mucosa proteome, cecal short-chain fatty acids (SCFA) profiling, and cecal microbial diversity and community of starter Pekin ducks. Male white Pekin ducks (1 d old, n = 240) were allocated into 2 groups, with 12 replicates and 10 birds per replicate in each group. For 21 d, all ducks had ad libitum access to either an RD or a riboflavin adequate (control, CON) diet, formulated by supplementing a basal diet with 0 or 10 mg riboflavin per kg of diet, respectively. Compared to the CON group, growth retardation, high mortality, and poor riboflavin status were observed in the RD group. Furthermore, RD reduced the villus height and the ratio of villus height to crypt depth of jejunum and ileum (P < 0.05), indicating morphological alterations of the small intestine. In addition, dietary RD enhanced relative cecum weight and decreased cecal SCFA concentrations (P < 0.05), including propionate, isobutyrate, butyrate, and isovalerate. The jejunum mucosa proteomics showed that 208 proteins were upregulated and 229 proteins were downregulated in the RD group compared to those in the CON group. Among these, RD mainly suppressed intestinal absorption and energy generation processes such as glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, leading to impaired ATP generation. In addition, RD decreased the community richness and diversity of the bacterial community in the cecum of ducks. Specifically, RD reduced the abundance of butyrate-producing bacteria in the cecum (P < 0.05), such as Eubacterium coprostanoligenes, Prevotella and Faecalibacterium. Dietary RD resulted in growth depression and intestinal hypofunction of Pekin ducks, which could be associated with impaired intestinal absorption and energy generation processes in intestinal mucosa, as well as gut microbiota dysbiosis. These findings contribute to our understanding of the mechanisms of intestinal hypofunction due to RD.

7.
IEEE Trans Cybern ; 52(5): 2663-2674, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33001825

RESUMO

This article deals with the almost surely exponential synchronization issue for complex dynamical networks (CDNs) under noise control. Different from most of the existing literature, aperiodically intermittent discrete observations noise control is proposed. It is worth noting that the state in noise work time is discretely observed rather than continuously. Meanwhile, some sufficient conditions are presented based on stochastic analytical techniques and the Lyapunov method. Besides, the upper bounds of noise rest rate and the time lag between two consecutive observations are estimated. Moreover, it is clear that CDNs are easier to achieve the almost surely exponential synchronization when noise control gain becomes larger. To demonstrate the effectiveness and feasibility of analytical results, two applications about single-link robot arm systems as well as second-order oscillator systems are given. At the same time, some numerical simulations are exhibited.

8.
Anim Biosci ; 35(11): 1787-1799, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35507845

RESUMO

OBJECTIVE: Choline deficiency, one main trigger for nonalcoholic fatty liver disease (NAFLD), is closely related to lipid metabolism disorder. Previous study in a choline-deficient model has largely focused on gene expression rather than gene structure, especially sparse are studies regarding to alternative splicing (AS). In modern life science research, primary hepatocytes culture technology facilitates such studies, which can accurately imitate liver activity in vitro and show unique superiority. Whereas limitations to traditional hepatocytes culture technology exist in terms of efficiency and operability. This study pursued an optimization culture method for duck primary hepatocytes to explore AS in choline-deficient model. METHODS: We performed an optimization culture method for duck primary hepatocytes with multi-step digestion procedure from Pekin duck embryos. Subsequently a NAFLD model was constructed with choline-free medium. RNA-seq and further analysis by rMATS were performed to identify AS events alterations in choline-deficency duck primary hepatocytes. RESULTS: The results showed E13 (embryonic day 13) to E15 is suitable to obtain hepatocytes, and the viability reached over 95% by trypan blue exclusion assay. Primary hepatocyte retained their biological function as well identified by Periodic Acid-Schiff staining method and Glucose-6-phosphate dehydrogenase activity assay, respectively. Meanwhile, genes of alb and afp and specific protein of albumin were detected to verify cultured hepatocytes. Immunofluorescence was used to evaluate purity of hepatocytes, presenting up to 90%. On this base, choline-deficient model was constructed and displayed significantly increase of intracellular triglyceride and cholesterol as reported previously. Intriguingly, our data suggested that AS events in choline-deficient model were implicated in pivotal biological processes as an aberrant transcriptional regulator, of which 16 genes were involved in lipid metabolism and highly enriched in glycerophospholipid metabolism. CONCLUSION: An effective and rapid protocol for obtaining duck primary hepatocytes was established, by which our findings manifested choline deficiency could induce the accumulation of lipid and result in aberrant AS events in hepatocytes, providing a novel insight into various AS in the metabolism role of choline.

9.
Nutrients ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35405962

RESUMO

Rubber seed oil (RSO) is a typical PUFA-enriched plant oil, but it has not been widely used as a healthy edible oil resource due to the lack of understanding of its nutritional values, health biological effects, and action mechanisms. This work was conducted to characterize the basic physicochemical properties, evaluate the antioxidant and anti-inflammatory properties, and explore the involved mechanisms of RSO in LPS-induced RAW 264.7 cells. In the present study, the basic physicochemical parameters of RSO indicated that RSO has good qualities as a potential edible plant oil resource. In LPS-induced macrophages, RSO supplementation displayed a significant antioxidant effect by decreasing ROS and MDA levels as well as elevating T-AOC. In addition, RSO supplementation showed an anti-inflammatory effect by reducing the production of NO, IL-1ß, IL-6, and TNF-α while promoting the production of IL-10. Moreover, RSO supplementation decreased the mRNA expression of IL-6, IL-1ß, TNF-α, iNOS, and MCP-1 genes while increasing the mRNA expression of the IL-10 gene. Furthermore, RSO supplementation increased Nrf2 protein expression and up-regulated antioxidant genes (HO-1 and NQO-1), which was accompanied by the decrease in TLR4 protein expression and NF-κB p65 phosphorylation as well as IκBα phosphorylation. This study provided some insight into the applications of RSO as a healthy edible oil resource.


Assuntos
Antioxidantes , Lipopolissacarídeos , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Gorduras Insaturadas , Inflamação/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Poult Sci ; 101(9): 102040, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917674

RESUMO

This study was conducted to investigate the effect of PUFA-enriched rubber (Hevea brasiliensis) seed oil (RSO) supplementation in diets on the productive performance, plasma biochemical parameters, immune response, and inflammation in lipopolysaccharide (LPS)-challenged laying hens. Two hundred and forty 25-wk-old Lohmann Brown laying hens were randomly divided into 5 treatments, each including 4 replicates with 12 birds per replicate. The control group and LPS-challenged group were fed a corn-soybean-basal diet; 3 RSO-supplemented groups were fed experimental diets containing 1, 2, and 4% RSO for a feeding period of 4 wk. On the 15, 18, 21, 24, and 27 d of the RSO supplementation period of 4 wk, hens were injected intraperitoneally with LPS at 1 mg/kg body weight (challenge group and RSO-supplemented groups) or with the same amount of saline (control group). The results showed that the addition of RSO promoted laying performance by increasing egg production, total egg weight, daily egg mass, and feed intake in comparison to the LPS-challenged laying hens (P < 0.05). In addition, compared with laying hens stimulated with LPS, the analysis of blood cell and plasma parameters revealed that hens in RSO-supplemented groups had significantly lower levels (P < 0.05) of white blood cells (WBC), lymphocytes (LYM), aspartate aminotransferase (AST) activity, immunoglobulin A (IgA), triiodothyronine (T3), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α). Further, RSO supplementation significantly reduced the mRNA expression of toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) of the ileum, spleen, and liver in LPS-challenged laying hens (P < 0.05), suggesting that the anti-inflammatory mechanism of RSO is related to the TLR4/NF-κB signaling pathway. In conclusion, RSO supplementation in diets could improve laying performance, attenuate immunological stress, and inhibit the inflammatory response in LPS-challenged laying hens, especially at the dietary inclusion of 4% RSO. This study will provide an insight into the application of RSO to positively contribute to overall health and welfare in laying hens.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Hevea , Ração Animal/análise , Animais , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Lipopolissacarídeos , NF-kappa B/metabolismo , Óleos de Plantas/metabolismo , Borracha/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
J Anim Sci Biotechnol ; 13(1): 61, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35581591

RESUMO

BACKGROUND: Although methionine (Met), the first-limiting dietary amino acid, has crucial roles in growth and regulation of lipid metabolism in ducks, mechanisms underlying are not well understood. Therefore, the objective was to use dietary Met deficiency to investigate the involvement of Met in lipid metabolism and fat accumulation of Pekin ducks. METHODS: A total of 150 male Pekin ducks (15-d-old, 558.5 ± 4.4 g) were allocated into 5 groups (6 replicates with 5 birds each) and fed corn and soybean meal-based diets containing 0.28%, 0.35%, 0.43%, 0.50%, and 0.58% Met, respectively, for 4 weeks. Met-deficient (Met-D, 0.28% Met) and Met-adequate (Met-A, 0.43% Met) groups were selected for subsequent molecular studies. Serum, liver, and abdominal fat samples were collected to assess the genes and proteins involved in lipid metabolism of Pekin ducks and hepatocytes were cultured in vivo for verification. RESULTS: Dietary Met deficiency caused growth depression and excess fat deposition that were ameliorated by feeding diets with adequate Met. Serum triglyceride and non-esterified fatty acid concentrations increased (P < 0.05), whereas serum concentrations of total cholesterol, low density lipoprotein cholesterol, total protein, and albumin decreased (P < 0.05) in Met-D ducks compared to those in Met-A ducks. Based on hepatic proteomics analyses, dietary Met deficiency suppressed expression of key proteins related to fatty acid transport, fatty acid oxidation, tricarboxylic acid cycle, glycolysis/gluconeogenesis, ketogenesis, and electron transport chain; selected key proteins had similar expression patterns verified by qRT-PCR and Western blotting, which indicated these processes were likely impaired. In vitro verification with hepatocyte models confirmed albumin expression was diminished by Met deficiency. Additionally, in abdominal fat, dietary Met deficiency increased adipocyte diameter and area (P < 0.05), and down-regulated (P < 0.05) of lipolytic genes and proteins, suggesting Met deficiency may suppress lipolysis in adipocyte. CONCLUSION: Taken together, these data demonstrated that dietary Met deficiency in Pekin ducks resulted in stunted growth and excess fat deposition, which may be related to suppression of fatty acids transportation and hepatic catabolism.

12.
Nutrients ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014863

RESUMO

Riboflavin is an essential micronutrient and a precursor of flavin mononucleotide and flavin adenine dinucleotide for maintaining cell homeostasis. Riboflavin deficiency (RD) induces cell apoptosis. Endoplasmic reticulum (ER) stress is considered to induce apoptosis, and C/EBP homologous protein (CHOP) is a key pathway involved in this process. However, whether RD-induced apoptosis is mediated by ER stress and the CHOP pathway remains unclear and needs further investigation. Therefore, the current study presents the effect of RD on ER stress and apoptosis in the human hepatoma cell line (HepG2). Firstly, cells were cultured in a RD medium (4.55 nM riboflavin) and a control (CON) medium (1005 nM riboflavin). We conducted an observation of cell microstructure characterization and determining apoptosis. Subsequently, 4-phenyl butyric acid (4-PBA), an ER stress inhibitor, was used in HepG2 cells to investigate the role of ER stress in RD-induced apoptosis. Finally, CHOP siRNA was transfected into HepG2 cells to validate whether RD triggered ER stress-mediated apoptosis by the CHOP pathway. The results show that RD inhibited cell proliferation and caused ER stress, as well as increased the expression of ER stress markers (CHOP, 78 kDa glucose-regulated protein, activating transcription factor 6) (p < 0.05). Furthermore, RD increased the cell apoptosis rate, enhanced the expression of proapoptotic markers (B-cell lymphoma 2-associated X, Caspase 3), and decreased the expression of the antiapoptotic marker (B-cell lymphoma 2) (p < 0.05). The 4-PBA treatment and CHOP knockdown markedly alleviated RD-induced cell apoptosis. These results demonstrate that RD induces cell apoptosis by triggering ER stress and the CHOP pathway.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Deficiência de Riboflavina , Riboflavina , Fator de Transcrição CHOP , Apoptose/genética , Estresse do Retículo Endoplasmático/genética , Células Hep G2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/farmacologia , Deficiência de Riboflavina/genética , Deficiência de Riboflavina/fisiopatologia , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
13.
Anim Nutr ; 11: 1-14, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35950191

RESUMO

Pantothenic acid deficiency (PAD) in animals causes growth depression, fasting hypoglycemia and impaired lipid and glucose metabolism. However, a systematic multi-omics analysis of effects of PAD on hepatic function has apparently not been reported. We investigated liver proteome and metabolome changes induced by PAD to explain its effects on growth and liver metabolic disorders. Pekin ducks (1-d-old, n = 128) were allocated into 2 groups, with 8 replicates and 8 birds per replicate. For 16 d, all ducks had ad libitum access to either a PAD or a pantothenic acid adequate (control, CON) diet, formulated by supplementing a basal diet with 0 or 8 mg pantothenic acid/kg of diet, respectively. Liver enlargement, elevated liver glycogen concentrations and decreased liver concentrations of triglyceride and unsaturated fatty acids were present in the PAD group compared to the CON group. Based on integrated liver proteomics and metabolomics, PAD mainly affected glycogen synthesis and degradation, glycolysis and gluconeogenesis, tricarboxylic acid (TCA) cycle, peroxisome proliferator-activated receptor (PPAR) signaling pathway, fatty acid beta oxidation, and oxidative phosphorylation. Selected proteins were confirmed by Western blotting. Downregulation of proteins and metabolites involved in glycogen synthesis and degradation, glycolysis and gluconeogenesis implied that these processes were impaired in PAD ducks, which could have contributed to fasting hypoglycemia, liver glycogen storage, insufficient ATP production, and growth retardation. In contrast, PAD also upregulated proteins and metabolites involved in fatty acid beta oxidation, the TCA cycle, and oxidative phosphorylation processes in the liver; presumably compensatory responses to produce ATP. We inferred that PAD decreased liver triglyceride and unsaturated fatty acids by activating fatty acid beta oxidation and impairing unsaturated fatty acid synthesis. These findings contributed to our understanding of the mechanisms of PAD-induced changes in hepatic metabolism.

14.
Animals (Basel) ; 11(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440693

RESUMO

A 2 × 6 factorial experiment was conducted to determine the influences of dietary metabolizable energy (ME) and methionine (Met) levels on growth performance, carcass traits, and plasma biochemical parameters of starter Pekin ducks from 1 to 21 days of age. A total of 600 one-day-old male Pekin ducklings were randomly assigned to 12 groups (six replicates each group and eight ducks per replicate) in a 2 × 6 two-factor arrangement. The basal Met levels of two basal diets (11.54 and 12.52 MJ/kg ME) were 0.31 and 0.29%, respectively. The crystalline L-Met was supplemented to yield six diets according to different supplemental levels (0, 0.05, 0.10, 0.15, 0.20, and 0.25%). The results showed that the body weight (BW) and average daily weight gain (ADG) were increased (p < 0.05) with increasing dietary Met levels. Dietary ME levels changed from 11.54 to 12.52 MJ/kg increased the BW and ADG (p < 0.05) as well as decreased the average daily feed intake and feed to gain ratio (p < 0.05). As the dietary Met level increased, leg muscle yield increased (p < 0.05). Conversely, increasing the dietary ME level decreased the leg muscle yield (p = 0.0024) and increased abdominal fat (p < 0.001). Meanwhile, the concentrations of total cholesterol (TCHO), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDLC) in plasma were decreased (p < 0.05) when the ME levels of diets changed from 11.54 to 12.52 MJ/kg. Meanwhile, the plasma TCHO and HDLC concentrations decreased (p < 0.05) as dietary Met levels increased. Based on the linear-broken line model, the dietary Met requirement of starter Pekin ducks from 1 to 21 days of age for optimal ADG were 0.362% (0.052% supplemental L-Met) at 11.54 MJ ME/kg and 0.468% (0.178% supplemental L-Met) at 12.52 MJ ME/kg, respectively, when crystal L-Met was supplemented to formulate the diets. This suggested that the Met requirement of starter Pekin ducks was affected by dietary ME levels. The data potentially provide theoretical support for the utilization of crystalline L-Met in duck production.

15.
Front Microbiol ; 12: 727200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539618

RESUMO

The current study was to investigate the effects of total dietary fiber (TDF) on growth performance, cecal structure, cecal microbial community, and short-chain fatty acids (SCFAs) profiles in the cecum of growing White Pekin ducks. A total of 108 male Pekin ducks of 14-days-old were randomly allocated and fed diets containing 12.4, 14.7, and 16.2% TDF for 35 days. Each dietary treatment consisted of six replicates with six birds each. The results showed that 14.7 and 16.2% TDF treatments promoted growth performance relative to 12.4% TDF treatments (P < 0.05). A total of 14.7 and 16.2% TDF treatments significantly elevated villus height, the ratio of villus height to crypt depth and muscle layer thickness of cecum, and lowered crypt depth compared with 12.4% TDF treatment (P < 0.05). Simultaneously, 14.7 and 16.2% TDF treatments up-regulated Claudin-1 mRNA expression of barrier genes in the cecum compared with 12.4% TDF (P < 0.05). Butyrate-producing bacteria like Oscillopiraceae affiliating to the phyla Firmicutes were observed as a biomarker in the 16.2% TDF. Higher concentration of butyrate in the cecum was obtained in the 14.7% TDF compared with 12.4 and 16.2% TDF (P < 0.05). The concentrations of isobutyrate, valerate, and isovalerate in the cecum were significantly increased in the 16.2% TDF compared with 12.4 and 14.7% TDF (P < 0.05). Meanwhile, the abundance of genus UCG-005 and Enterococcus was positive correlations with isobutyrate and valerate (P < 0.05). However, the concentration of propionate in the cecum significantly decreased in 14.7 and 16.2% TDF treatments relative to 12.4% TDF treatments (P < 0.05). In summary, increasing TDF levels improved growth performance, cecal histomorphology, and barrier function of meat ducks and it might be mediated by the changes of microbiota communities, especially bloom of SCFAs-producing bacteria, which facilitated the interaction between intestinal mucosa and microbiota.

16.
Animals (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679892

RESUMO

This study aimed to evaluate the effects of different dietary pantothenic acid levels on growth performance, carcass traits, and plasma biochemical parameters of starter Pekin ducks from 1 to 21 days of age, as well as the pantothenic acid requirement of starter ducks. A total of 384 one-day-old male white Pekin ducklings were assigned randomly into 6 dietary treatments, each with 8 replicate pens of 8 ducks. Ducks were fed conventional basal corn-soybean diets containing 8.5, 10.5, 12.5, 14.5, 16.5, and 18.5 mg/kg pantothenic acid for 21 days. Growth depression, poor pantothenic acid status, fasting hypoglycemia, and elevated plasma uric acid (UA) content were observed in the ducks fed the pantothenic acid-deficient basal diet (p < 0.05), and these adverse effects were ameliorated by pantothenic acid supplementation. Among all ducks, the birds fed the basal diet with no supplementation of pantothenic acid had the lowest body weight, average daily weight gain (ADG), average daily feed intake (ADFI), breast meat yield, and plasma pantothenic acid and glucose contents (p < 0.05), and the greatest plasma UA content (p < 0.05). In addition, all these parameters showed a linear or quadratic response as dietary pantothenic acid levels increased (p < 0.05). According to broken-line regression, the pantothenic acid requirements of starter male white Pekin ducks for body weight, ADG, and plasma pantothenic acid content were 13.36, 13.29, and 15.0 mg/kg, respectively. The data potentially provides theoretical support for the utilization of pantothenic acid in duck production.

17.
IEEE Trans Cybern ; 50(6): 2414-2424, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31398140

RESUMO

In this paper, to investigate the exponential synchronization of stochastic neural networks, a new periodically intermittent discrete observation control (PIDOC) is first proposed. Different from the existing periodically intermittent control, our control in control time is feedback control based on discrete-time state observations (FCDSOs) instead of a continuous-time one. By employing the Lyapunov method, graph theory, and theory of differential inclusions, the exponential synchronization of stochastic neural networks with a discontinuous right-hand side is realized by PIDOC and some sufficient conditions are presented. Especially, when control width tends to control period, PIDOC will be reduced to a general FCDSO and we give some detailed discussions. Then, we provide some corollaries about synchronization in mean square, asymptotical synchronization in mean square, and exponential synchronization of stochastic neural networks under FCDSO. Finally, some numerical simulations are provided to demonstrate our analytical results.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Simulação por Computador , Processos Estocásticos
18.
Gene ; 748: 144710, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32339622

RESUMO

Earlier works identified the second generation (Z8R2) of a resistant Pekin duck line to duck hepatitis A virus genotype 3 (DHAV-3), which displays significantly strong resistance than that of the second generation (Z8S2) of a susceptible Pekin duck line. To understand the genetic mechanisms that determine the different resistance/susceptibility of Z8R2 and Z8S2 to DHAV-3, transcriptome analysis on livers of infected Pekin ducklings was performed to screen differentially expressed genes (DEGs). We found that DHAV-3 infection has a great effect on metabolism of Z8S2 at the transcription level. Using a newly created fourth generation of the resistant Pekin duck line (Z8R4) and an unselected Pekin duck flock (Z7) as models, hypoglycemia and dramatically increased aspartate aminotransferase and alanine aminotransferase were shown to be noticeable signs of fatal cases caused by DHAV-3 infection. These findings, together with expression analysis and verification of DEGs, support the view that DHAV-3 infection results in glucose metabolic abnormalities in susceptible individuals and that there are significant differences in expression patterns of glucose metabolism-related DEGs between susceptible and resistant individuals. Notably, cytokines displayed a negative correlation with glucose synthesis in terms of expression in susceptible individuals following DHAV-3 infection. Mechanism analyses suggests that cytokines will activate PI3K-AKT pathway and/or JAK-STAT pathway by up-regulated expression of JAK2, and thereby causes down-regulated expression of G6PC and/or ACAT1. Cytokines can also cause down-regulated expression of HPGDS by JAK2. The present work contributes to the understanding of pathogenesis of DHAV-3 infection and the resistance breeding project against DHAV-3.


Assuntos
Patos/virologia , Glucose/metabolismo , Vírus da Hepatite do Pato/genética , Infecções por Picornaviridae/metabolismo , Animais , Genótipo , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia
19.
Poult Sci ; 99(9): 4436-4441, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32867987

RESUMO

An experiment was conducted to investigate the effects of dietary pantothenic acid levels on growth performance, carcass traits, pantothenic acid status, and antioxidant status of male white Pekin ducks from 15 to 42 D of age and to evaluate the requirement of this vitamin for growing ducks. Different levels pantothenic acid (0, 2, 4, 6, 8, and 10 mg/kg) were supplemented to a corn-soy isolate protein basal diet to produce 6 dietary treatments with different analyzed total pantothenic acid levels (4.52, 6.44, 8.37, 9.88, 12.32, and 14.61 mg/kg). A total of 240 15-day-old male white Pekin ducks were allotted to 6 dietary treatments with 8 replicate pens of 5 birds per pen. At 42 D of age, growth performance, carcass traits, tissue pantothenic acid concentrations, and antioxidant status of white Pekin ducks were examined. Significant effects of dietary pantothenic acid on BW, average daily weight gain (ADG), plasma, and liver pantothenic acid concentrations were observed (P < 0.05) but not carcass traits. The growing ducks fed the basal diet without pantothenic acid supplementation had the lowest BW, ADG, plasma, and liver pantothenic acid content among all ducks (P < 0.05). In addition, the ducks fed the basal diet without pantothenic acid supplementation showed the lowest antioxidant capacity indicated by greatest plasma malondialdehyde content and lowest liver total antioxidant capacity (P < 0.05). And, these criteria responded linearly as dietary pantothenic acid levels increased (P < 0.05). These results indicated that dietary pantothenic acid supplementation improved growth performance and antioxidant status of the growing ducks. In accordance with the broken-line model, the pantothenic acid requirements (based on dietary total pantothenic acid) of male white Pekin ducks from 15 to 42 D of age for BW, ADG, and plasma and liver pantothenic acid contents were 10.18, 10.27, 12.06, and 10.79 mg/kg, respectively.


Assuntos
Suplementos Nutricionais , Patos , Crescimento , Ácido Pantotênico , Animais , Dieta/veterinária , Patos/crescimento & desenvolvimento , Patos/imunologia , Ativação Enzimática/efeitos dos fármacos , Crescimento/efeitos dos fármacos , Masculino , Oxirredutases/metabolismo , Ácido Pantotênico/farmacologia , Complexo Vitamínico B/farmacologia
20.
Animals (Basel) ; 9(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480210

RESUMO

The experiment was conducted to evaluate the requirement of cyanocobalamin of male Pekin ducks from hatch to 21 days of age. A total of three-hundred-eighty-four, one-day-old meat-type male Pekin ducks were randomly allocated to six treatments, i.e., dietary cyanocobalamin (vitamin B12) concentrations of 0.00, 0.02, 0.04, 0.06, 0.08 and 1.00 mg/kg, respectively in their feed. Each treatment had eight replicated pens with eight ducks for each pen. Feed and water were provided ad libitum. The experiment was conducted for 21 days. Different growth parameters including average daily weight gain (ADG), average daily feed intake (ADFI), feed conversion ratio (FCR), and hematological indicators were evaluated because, on the basis of hematological indicators, the health and nutritional status of an animal can be accessed. It is observed that supplemental cyanocobalamin has no significant effect on ADG, ADFI, and FCR but it improves hematological parameters such as white blood cells, red blood cells, and its indices and platelet counts compared to the control group (p < 0.05). On the basis of growth performance and hematological indicators it is concluded that 0.02 mg cyanocobalamin/kg of feed is the dietary requirement of male Pekin ducks from hatch to day 21 of age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA