Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(6): 5049-5055, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722891

RESUMO

BiFeO3 is the only material with ferroelectric Curie temperature and Néel temperature higher than room temperature, making it one of the most well-studied multiferroic materials. Based on an ab initio evolutionary algorithm, we predicted a new cubic C-type antiferromagnetic structure (Fd3̄m-BiFeO3) at ambient pressure. It was found that Fd3̄m-BiFeO3 is the hardest BiFeO3 (Vickers hardness ∼ 9.12 GPa), about 78% harder than R3c-BiFeO3 (the well-known multiferroic material), which contributes to extending the life of BiFeO3 devices. In addition, Fd3̄m-BiFeO3 has the largest shear modulus (83.74 GPa) and the largest Young's modulus (214.72 GPa). Besides, we found an interesting phenomenon that among the common multiferroic materials (BiFeO3, BaTiO3, PbTiO3, SrRuO3, KNbO3, and BiMnO3), Pnma-BiMnO3 has the largest bulk modulus, and its bulk modulus is about 15% larger than that of Fd3̄m-BiFeO3. However, its Vickers hardness (4.47 GPa) is much smaller than that of Fd3̄m-BiFeO3. This is because the Vickers hardness is proportional to the shear modulus and the shear modulus of Fd3̄m-BiFeO3 is larger than that of Pnma-BiMnO3. This work provides a deeper and more comprehensive understanding of BiFeO3.

2.
J Org Chem ; 85(12): 7840-7847, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32469532

RESUMO

Herein, we describe an efficient, practical free-metal rapid access to active hexafluoroisopropyl benzoates from anthranils, hexafluoroisopropanol, and N-alkoxy α-halogenoacetamides. Notably, this process includes anthranils that underwent a distinct pattern reaction. The protocol has good functional group tolerance and a broad substrate scope. Using a simple and general method, we accomplished potential synthetic application of active ester.

3.
ACS Nano ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316416

RESUMO

The machine vision utilized in unmanned driving systems must possess the ability to accurately perceive scenes under low-light illumination conditions. To achieve this, photodetectors with low detection limits and a fast response are essential. Current systems rely on avalanche diodes or lidars, which come with the drawbacks of increased energy consumption and complexity. Here, we present an ultrasensitive photodetector based on a two-dimensional (2D) Bi2O2Se/In2S3 heterostructure, incorporating a homotype unilateral depletion band design. This innovative architecture effectively modulates the transport of both free and photoexcited carriers, suppressing the dark current and facilitating the rapid and efficient separation of photocarriers. Owing to these features, this device exhibits a responsivity of 144 A/W, a specific detectivity of 1.2 × 1014 Jones, and a light on/off ratio of 1.1 × 105. These metrics rank among the top values reported for state-of-the-art 2D devices. Moreover, this device also demonstrates a fast response time of 170/296 µs and a low noise equivalent power of 0.57 fW/Hz1/2, attributes that endow it with ultraweak light imaging capabilities. Furthermore, we have successfully integrated this device into an unmanned driving system, providing a perspective on the design and fabrication of future optoelectronic devices.

4.
ACS Appl Mater Interfaces ; 16(28): 36609-36619, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949990

RESUMO

Photodetectors based on two-dimensional van der Waals (2D vdW) heterostructures with high detectivity and rapid response have emerged as promising candidates for next-generation imaging applications. However, the practical application of currently studied 2D vdW heterostructures faces challenges related to insufficient light absorption and inadequate separation of photocarriers. To address these challenges, we present a sandwiched WS2/MoTe2/WS2 heterostructure with a completely depleted interlayer, integrated on a mirror electrode, for a highly efficient photodetector. This well-designed structure enhances light-matter interactions while facilitating effective separation and rapid collection of photocarriers. The resulting photodetector exhibits a broadband photoresponse spanning from deep ultraviolet to near-infrared wavelengths. When operated in self-powered mode, the device demonstrates an exceptional response speed of 22/34 µs, along with an impressive detectivity of 8.27 × 1010 Jones under 635 nm illumination. Additionally, by applying a bias voltage of -1 V, the detectivity can be further increased to 1.49 × 1012 Jones, while still maintaining a rapid response speed of 180/190 µs. Leveraging these outstanding performance metrics, high-resolution visible-near-infrared light imaging has been successfully demonstrated using this device. Our findings provide valuable insights into the optimization of device architecture for diverse photoelectric applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA