Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Labelled Comp Radiopharm ; 67(8): 280-287, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744538

RESUMO

A key aspect for the applicability of 89Zr-radioimmunoconjugates is inert modification and radiolabeling. The two commercially available bifunctional variants of the siderophore desferrioxamine (DFO), Fe-DFO-N-suc-TFP-ester and p-NCS-Bz-DFO, are most often used for clinical 89Zr-immuno-PET. The use of Fe-DFO-N-suc-TFP-ester is advantageous with regard to higher radiolysis stability and more facile assessment of radiochemical purity as well as chelator-to-mAb ratio. However, not all mAbs withstand the Fe-removal step at relatively low pH (4-4.5) using EDTA, which is needed after conjugation to allow 89Zr labeling. In this study, it was investigated whether hydroxybenzyl ethylenediamine (HBED) or the clinically approved deferiprone (DFP) can serve as an alternative for EDTA to establish a pH-independent mild method for Fe-removal and thereby broaden the applicability of Fe-DFO-N-suc-TFP-ester. Carrier-added [59Fe]Fe-DFO-N-suc-TFP-ester was used for mAb modification to enable direct tracking of the Fe-removal efficiency under various conditions. Whereas incomplete Fe-removal with HBED was observed at pH 5 or higher, Fe-removal with DFP was possible at a broad pH range (4-9). This provides a mild, pH-independent method for Fe-removal, improving the applicability and attractiveness of Fe-DFO-N-suc-TFP-ester for 89Zr-mAb preparation.


Assuntos
Desferroxamina , Ferro , Tomografia por Emissão de Pósitrons , Radioisótopos , Zircônio , Zircônio/química , Desferroxamina/química , Radioisótopos/química , Ferro/química , Tomografia por Emissão de Pósitrons/métodos , Piridonas/química , Deferiprona/química , Imunoconjugados/química , Compostos Radiofarmacêuticos/química , Anticorpos Monoclonais/química
2.
Mol Imaging Biol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093482

RESUMO

PURPOSE: In the emerging field of antibody treatments for neurodegenerative diseases, reliable tools are needed to evaluate new therapeutics, diagnose and select patients, monitor disease progression, and assess therapy response. Immuno-PET combines the high affinity and exceptional specificity of monoclonal antibodies with the non-invasive imaging technique positron emission tomography (PET). Its application in neurodegenerative disease brain imaging has been limited due to the marginal uptake across the blood-brain barrier (BBB). The emergence of BBB-shuttle antibodies with enhanced uptake across the BBB extended immuno-PET to brain imaging. We recently reported about specific brain uptake of a bispecific aducanumab mTfR antibody in APP/PS1 TG mice using 89Zr-immuno-PET. However, a sufficient target-to-background ratio was reached at a relatively late scanning time point of 7 days post-injection. To investigate if a better target-to-background ratio could be achieved earlier, an aducanumab BBB-shuttle with a mutated Fc region for reduced FcRn affinity was evaluated. PROCEDURES: AduH310A-8D3 and Adu-8D3 were modified with DFO*-NCS and subsequently radiolabeled with 89Zr. The potential influence of the H310A mutation, modification with DFO*-NCS, and subsequent radiolabeling on the in vitro binding to amyloid-beta and mTfR1 was investigated via amyloid-beta peptide ELISA and FACS analysis using mTfR1 transfected CHO-S cells. Blood kinetics, brain uptake, in vivo PET imaging and target engagement of radiolabeled AduH310A-8D3 were evaluated and compared to non-mutated Adu-8D3 in APP/PS1 TG mice and wild-type animals as controls. RESULTS: Radiolabeling was performed with sufficient radiochemical yields and radiochemical purity. In vitro binding to amyloid-beta and mTfR1 showed no impairment. [89Zr]Zr-AduH310A-8D3 showed faster blood clearance and earlier differentiation of amyloid-beta-related brain uptake compared to [89Zr]Zr-Adu-8D3. However, only half of the brain uptake was observed for [89Zr]Zr-AduH310A-8D3. CONCLUSIONS: Although a faster blood clearance of AduH310A-8D3 was observed, it was concluded that no beneficial effects for 89Zr-immuno-PET imaging of brain uptake were obtained.

3.
Theranostics ; 12(16): 7067-7079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276653

RESUMO

The accelerated approval of the monoclonal antibody (mAb) aducanumab as a treatment option for Alzheimer's Disease and the continued discussions about its efficacy have shown that a better understanding of immunotherapy for the treatment of neurodegenerative diseases is needed. 89Zr-immuno-PET could be a suitable tool to open new avenues for the diagnosis of CNS disorders, monitoring disease progression, and assessment of novel therapeutics. Herein, three different 89Zr-labeling strategies and direct radioiodination with 125I of a bispecific anti-amyloid-beta aducanumab derivate, consisting of aducanumab with a C-terminal fused anti-transferrin receptor binding single chain Fab fragment derived from 8D3 (Adu-8D3), were compared ex vivo and in vivo with regard to brain uptake and target engagement in an APP/PS1 Alzheimer's disease mouse model and wild type animals. Methods: Adu-8D3 and a negative control antibody, based on the HIV specific B12 antibody also carrying C-terminal fused 8D3 scFab (B12-8D3), were each conjugated with NCS-DFO, NCS-DFO*, or TFP-N-suc-DFO-Fe-ester, followed by radiolabeling with 89Zr. 125I was used as a substitute for 124I for labeling of both antibodies. 30 µg of radiolabeled mAb, corresponding to approximately 6 MBq 89Zr or 2.5 MBq 125I, were injected per mouse. PET imaging was performed 1, 3 and 7 days post injection (p.i.). All mice were sacrificed on day 7 p.i. and subjected to ex vivo biodistribution and brain autoradiography. Immunostaining on brain tissue was performed after autoradiography for further validation. Results: Ex vivo biodistribution revealed that the brain uptake of [89Zr]Zr-DFO*-NCS-Adu-8D3 (2.19 ±0.12 %ID/g) was as high as for its 125I-analog (2.21 ±0.15 %ID/g). [89Zr]Zr-DFO-NCS-Adu-8D3 and [89Zr]Zr-DFO-N-suc-Adu-8D3 showed significantly lower uptake (< 0.65 %ID/g), being in the same range as for the 89Zr-labeled controls (B12-8D3). Autoradiography of [89Zr]Zr-DFO*-NCS-Adu-8D3 and [125I]I-Adu-8D3 showed an amyloid-beta related granular uptake pattern of radioactivity. In contrast, the [89Zr]Zr-DFO-conjugates and the control antibody groups did not show any amyloid-beta related uptake pattern, indicating that DFO is inferior for 89Zr-immuno-PET imaging of the brain in comparison to DFO* for Adu-8D3. This was confirmed by day 7 PET images showing only amyloid-beta related brain uptake for [89Zr]Zr-DFO*-NCS-Adu-8D3. In wild type animals, such an uptake was not observed. Immunostaining showed a co-localization of all administered Adu-8D3 conjugates with amyloid-beta plaques. Conclusion: We successfully demonstrated that 89Zr-immuno-PET is suitable for imaging and quantifying amyloid-beta specific brain uptake using a bispecific aducanumab brain shuttling antibody, Adu-8D3, but only when using the novel chelator DFO*, and not DFO, for labeling with 89Zr.


Assuntos
Doença de Alzheimer , Anticorpos Biespecíficos , Animais , Camundongos , Radioisótopos do Iodo , Quelantes , Desferroxamina , Zircônio , Distribuição Tecidual , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais/uso terapêutico , Peptídeos beta-Amiloides , Fragmentos Fab das Imunoglobulinas , Ésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA