Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Opt Express ; 31(11): 17964-17986, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381517

RESUMO

Laser ablation is nowadays an extensively applied technology to probe the chemical composition of solid materials. It allows for precise targeting of micrometer objects on and in samples, and enables chemical depth profiling with nanometer resolution. An in-depth understanding of the 3D geometry of the ablation craters is crucial for precise calibration of the depth scale in chemical depth profiles. Herein we present a comprehensive study on laser ablation processes using a Gaussian-shaped UV-femtosecond irradiation source and present how the combination of three different imaging methods (scanning electron microscopy, interferometric microscopy, and X-ray computed tomography) can provide accurate information on the crater's shapes. Crater analysis by applying X-ray computed tomography is of considerable interest because it allows the imaging of an array of craters in one step with sub-µm accuracy and is not limited to the aspect ratio of the crater. X-ray computed tomography thereby complements the analysis of laser ablation craters. The study investigates the effect of laser pulse energy and laser burst count on a single crystal Ru(0001) sample. Single crystals ensure that there is no dependence on the grain orientations during the laser ablation process. An array of 156 craters of different dimensions ranging from <20 nm to ∼40 µm in depth were created. For each individually applied laser pulse, we measured the number of ions generated in the ablation plume with our laser ablation ionization mass spectrometer. We show to which extent the combination of these four techniques reveals valuable information on the ablation threshold, the ablation rate, and the limiting ablation depth. The latter is expected to be a consequence of decreasing irradiance upon increasing crater surface area. The ion signal generated was found to be proportional to the volume ablated up to the certain depth, which enables in-situ depth calibration during the measurement.

2.
J Anal At Spectrom ; 38(7): 1372-1378, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37415803

RESUMO

In femtosecond Laser Ablation Ionisation Mass Spectrometry (fs-LIMS) short laser pulses are used to ablate, atomise, and ionise solid sample material shot-by-shot. When ablating non-conductive samples electric charging of the surface can occur. Depending on the geometry of the instrument, the surface charge can influence the spread of the ablation plume and reduce spectral quality. Methods to reduce surface charging were investigated using a non-conductive geological sample and a miniature fs-LIMS system with a co-linear ablation geometry. Pausing five seconds between consecutive laser bursts fired on non-coated material improved the spectral quality by giving surface charges more time to dissipate. However, best mass spectrometric results were achieved after the sample was sputter coated with a thin gold layer, as a conductive sample surface hinders charge build-up. Consequently, gold coating allowed operation of the laser system at much higher laser pulse energies improving sensitivity and reliability. It also removed the need to pause between laser bursts, speeding up the measurement acquisition.

3.
Rapid Commun Mass Spectrom ; 35(12): e9094, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33821534

RESUMO

RATIONALE: Femtosecond (fs) laser ablation ion sources have allowed for improved measurement capabilities and figures of merit of laser ablation based spectroscopic and mass spectrometric measurement techniques. However, in comparison to longer pulse laser systems, the ablation plume from fs lasers is observed to be colder, which favors the formation of polyatomic species. Such species can limit the analytical capabilities of a system due to isobaric interferences. In this contribution, a double-pulse femtosecond (DP-fs) laser ablation ion source is coupled to our miniature Laser Ablation Ionization Mass Spectrometry (LIMS) system and its impact on the recorded stoichiometry of the generated plasma is analyzed in detail. METHODS: A DP-fs laser ablation ion source (temporal delays of +300 to - 300 ps between pulses) is connected to our miniature LIMS system. The first pulse is used for material removal from the sample surface and the second for post-ionization of the ablation plume. To characterize the performance, parametric double- and single-pulse studies (temporal delays, variation of the pulse energy, voltage applied on detector system) were conducted on three different NIST SRM alloy samples (SRM 661, 664 and 665). RESULTS: At optimal instrument settings for both the double-pulse laser ablation ion source and the detector voltage, relative sensitivity coefficients were observed to be closer (factor of ~2) to 1 compared with single-pulse measurements. Furthermore, the optimized settings worked for all three samples, meaning no further optimization was necessary when changing to another alloy sample material during this study. CONCLUSIONS: The application of a double-pulse femtosecond laser ablation ion source resulted in the recording of improved stoichiometry of the generated plasma using our LIMS measurement technique. This is of great importance for the quantitative chemical analysis of more complex solid materials, e.g., geological samples or metal alloys, especially when aiming for standard-free quantification procedures for the determination of the chemical composition.

4.
Rapid Commun Mass Spectrom ; 34(14): e8803, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32246868

RESUMO

RATIONALE: Laser ablation combined with mass spectrometry forms a promising tool for chemical depth profiling of solids. At irradiations near the ablation threshold, high depth resolutions are achieved. However, at these conditions, a large fraction of ablated species is neutral and therefore invisible to the instrument. To compensate for this effect, an additional ionization step can be introduced. METHODS: Double-pulse laser ablation is frequently used in material sciences to produce shallow craters. We apply double-pulse UV femtosecond (fs) Laser Ablation Ionization Mass Spectrometry to investigate the depth profiling performance. The first pulse energy is set to gentle ablation conditions, whereas the second pulse is applied at a delay and a pulse energy promoting the highest possible ion yield. RESULTS: The experiments were performed on a Cr/Ni multi-layered standard. For a mean ablation rate of ~3 nm/pulse (~72 nJ/pulse), a delay of ~73 ps provided optimal results. By further increasing the energy of the second pulse (5-30% higher with respect to the first pulse) an enhancement of up to 15 times the single pulse intensity was achieved. These conditions resulted in mean depth resolutions of ~37 and ~30 nm for the Cr and Ni layers, respectively. CONCLUSIONS: It is demonstrated on the thin-film standard that the double-pulse excitation scheme substantially enhances the chemical depth profiling resolution of LIMS with respect to the single-pulse scheme. The post-ionization allows for extraordinarily low ablation rates and for quantitative and stoichiometric analysis of nm-thick films/coatings.

5.
Anal Chem ; 90(4): 2692-2700, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29400952

RESUMO

State-of-the-art laser ablation (LA) depth-profiling techniques (e.g. LA-ICP-MS, LIBS, and LIMS) allow for chemical composition analysis of solid materials with high spatial resolution at micro- and nanometer levels. Accurate determination of LA-volume is essential to correlate the recorded chemical information to the specific location inside the sample. In this contribution, we demonstrate two novel approaches towards a better quantitative analysis of LA craters with dimensions at micrometer level formed by femtosecond-LA processes on single-crystalline Si(100) and polycrystalline Cu model substrates. For our parametric crater evolution studies, both the number of applied laser shots and the pulse energy were systematically varied, thus yielding 2D matrices of LA craters which vary in depth, diameter, and crater volume. To access the 3D structure of LA craters formed on Si(100), we applied a combination of standard lithographic and deep reactive-ion etching (DRIE) techniques followed by a HR-SEM inspection of the previously formed crater cross sections. As DRIE is not applicable for other material classes such as metals, an alternative and more versatile preparation technique was developed and applied to the LA craters formed on the Cu substrate. After the initial LA treatment, the Cu surface was subjected to a polydimethylsiloxane (PDMS) casting process yielding a mold being a full 3D replica of the LA craters, which was then analyzed by HR-SEM. Both approaches revealed cone-like shaped craters with depths ranging between 1 and 70 µm and showed a larger ablation depth of Cu that exceed the one of Si by a factor of about 3.

6.
Anal Chem ; 90(11): 6666-6674, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29722528

RESUMO

State-of-the-art three-dimensional very large-scale integration (3D-VLSI) relies, among other factors, on the purity of high-aspect-ratio Cu interconnects such as through-silicon-vias (TSVs). Accurate spatial chemical analysis of electroplated TSV structures has been proven to be challenging due to their large aspect ratios and their multimaterial composition (Cu and Si) with distinct physical properties. Here, we demonstrate that these structures can be accurately analyzed by femtosecond (fs) laser beam ablation techniques in combination with ionization mass spectrometry (LIMS). We specifically report on novel preparation approaches for the postablation analysis of craters formed upon TSV depth profiling. The novel TSV sample preparation is based on deep and material-selective reactive-ion etching of the Si matrix surrounding the Cu interconnects thus facilitating systematic focused-ion-beam (FIB) investigations of the high-aspect-ratio TSV structures upon ablation. The particular structure of the TSV analyte combined with the ⌀beam > ⌀Cu-TSV condition allowed for an in-depth investigation of fundamental laser ablation processes, particularly focusing on the redeposition of ablated material at the inner side-walls of the LIMS craters. This phenomenon is of imminent importance for the ultimate quantification in any laser ablation-based depth profiling. In addition, we have developed a new method which allows the unambiguous determination of the crossing-point of the Si/Cu||bare Si interface upon Cu-TSV depth profiling which is based on pronounced, depth-dependent changes in the mass-spectrometric detection of those Si xy+ species formed upon the LIMS depth erosion.

7.
Anal Chem ; 90(8): 5179-5186, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578694

RESUMO

Through-silicon-via (TSV) technology enables 3D integration of multiple 2D components in advanced microchip architectures. Key in the TSV fabrication is an additive-assisted Cu electroplating process in which the additives employed may get embedded in the TSV body. This incorporation negatively influences the reliability and durability of the Cu interconnects. Here, we present a novel approach toward the chemical analysis of TSVs which is based on femtosecond laser ablation ionization mass spectrometry (fs-LIMS). The conditions for LIMS depth profiling were identified by a systematic variation of the laser pulse energy and the number of laser shots applied. In this contribution, new aspects are addressed related to the analysis of highly heterogeneous specimens having dimensions in the range of the probing beam itself. Particularly challenging were the different chemical and physical properties of which the target specimens were composed. Depth profiling of the TSVs along their main axis (approach 1) revealed a gradient in the carbon (C) content. These differences in the C concentration inside the TSVs could be confirmed and quantified by LIMS analyses of cross-sectionally sliced TSVs (approach 2). Our quantitative analysis revealed a C content that is ∼1.5 times higher at the TSV top surface compared to its bottom. Complementary Scanning Auger Microscopy (SAM) data confirmed a preferential embedment of suppressor additives at the side walls of the TSV. These results demonstrate that the TSV filling concept significantly deviates from common Damascene electroplating processes and will therefore contribute to a more comprehensive, mechanistic understanding of the underlying mechanisms.

8.
Anal Chem ; 89(3): 1632-1641, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28105805

RESUMO

Femtosecond laser ablation/ionization mass spectrometry (LIMS) has been applied to probe the spatial element composition of three ternary Cu-Sn-Pb model bronze alloys (lead bronzes: CuSn10Pb10, CuSn7Pb15, and CuSn5Pb20), which were recently identified as high-performance cathode materials in the context of electro-organic synthesis (dehalogenation, deoxygenation) of pharmaceutically relevant building blocks. The quantitative and spatially resolved element analysis of such cathode materials will help in understanding the observed profound differences in their electrochemical reactivity and stability. For that purpose, we developed a measurement procedure using the LIMS technique which allows analyzing the element composition of these ternary alloys in all three spatial dimensions. Their chemical composition was determined spotwise, by ablating material from various surface locations on a 4 × 4 raster array (50 µm pitch distance, ablation crater diameter of ∼20 µm). The element analyses show significant chemical inhomogeneities in all three ternary bronze alloys with profound local deviations from their nominal bulk compositions and indicate further differences in the nature and origin of these compositional inhomogeneities. In addition, the element analyses showed specific compositional correlations among the major elements (Cu, Sn, and Pb) in these alloys. On selected sample positions minor (Ni, Zn, Ag, and Sb) and trace elements (C, P, Fe, and As) were quantified. These results are in agreement with inductively coupled plasma collision/reaction interface mass spectrometry (ICP-CRI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reference measurements, thus proving the LIMS depth profiling technique as a powerful alternative methodology to conventional quantification techniques with the advantage, however, of a highly localized measurement capability.

9.
Rapid Commun Mass Spectrom ; 30(8): 1031-6, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27003040

RESUMO

RATIONALE: There is an increasing interest in the quest for low molecular weight biomarkers that can be studied on extra-terrestrial objects by direct laser desorption mass spectrometry (LD-MS). Although molecular structure investigations have recently been carried out by direct LD-MS approaches, there is still a lack of suitable instruments for implementation on a spacecraft due to weight, size and power consumption demands. In this contribution we demonstrate the feasibility of LD-MS structural analysis of molecular species by a miniature laser desorption-ionization mass spectrometer (instrument name LMS) originally designed for in situ elemental and isotope analysis of solids in space research. METHODS: Direct LD-MS studies with molecular resolution were carried out by means of a Laser Ablation/Ionization Mass Spectrometry (LIMS) technique. Two polymer samples served as model systems: neutral polyethylene glycol (PEG) and cationic polymerizates of imidazole and epichlorohydrin (IMEP). Optimal conditions for molecular fragmentation could be identified for both polymers by tuning the laser energy and the instrument-sample distance. RESULTS: PEG and IMEP polymers show sufficient stability over a relatively wide laser energy range. Under mild LD conditions only moderate fragmentation of the polymers takes place so that valuable structural characterization based on fragment ions can be achieved. As the applied laser pulse energy rises, the abundance of fragment ions increases, reaches a plateau and subsequently drops down due to more severe fragmentation and atomization of the polymers. At this final stage, usually referred to as laser ablation, only elemental/isotope analysis can be achieved. CONCLUSIONS: Our investigations demonstrate the versatility of the LMS instrument that can be tuned to favourable laser desorption conditions that successfully meet molecule-specific requirements and deliver abundant fragment ion signals with detailed structural information. Overall, the results show promise for use in similar studies on planetary surfaces beyond Earth where no or minimal sample preparation is essential.


Assuntos
Simulação por Computador , Meio Ambiente Extraterreno/química , Espectrometria de Massas/métodos , Biomarcadores/análise , Biomarcadores/química , Modelos Químicos , Polímeros/análise , Polímeros/química , Voo Espacial
10.
Planet Space Sci ; 131: 70-78, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818000

RESUMO

We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

11.
Chimia (Aarau) ; 70(4): 268-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27131112

RESUMO

Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed.

12.
Anal Chem ; 87(4): 2037-41, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25642789

RESUMO

High-resolution chemical depth profiling measurements of copper films are presented. The 10 µm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

13.
Space Sci Rev ; 220(5): 59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132056

RESUMO

We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): "Surfaces and Near-surface Exospheres of the Satellites, dust and rings".

14.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204280

RESUMO

Scientific detection and imaging instruments for low-energetic neutral atoms (ENA) onboard spacecraft require thorough pre-flight laboratory calibration against a well-characterized neutral atom beam source. To achieve this requirement, a dedicated test facility is available at the University of Bern, which is equipped with a powerful plasma ion source and an ion beam neutralization stage. Using surface neutralization, low-energy neutral atom beams of any desired gas species can be produced in the energy range from 3 keV down as low as 10 eV. As the efficiency of the neutralization stage is species and energy dependent, the neutralizer itself needs to be calibrated against an independent reference. We report on the calibration and characterization of this neutral atom beam source using our recently developed Absolute Beam Monitor (ABM) as a primary calibration standard. The ABM measures the absolute ENA flux independent of neutral species in the energy range from 10 eV to 3 keV. We obtain calibration factors of a few 100 cm-2 s-1 pA-1, depending on species at beam energies above about 100 eV, and a power-law decrease for energies below 100 eV. Furthermore, the energy loss of neutralized ions in the surface neutralizer is estimated from time-of-flight measurements using the ABM. The relative energy loss increases with ENA energy from low levels near zero up to 20%-35% at 3 keV, depending on atomic species. Having calibrated our neutral beam source allows for accurate calibration of ENA space instruments.

15.
Rev Sci Instrum ; 93(9): 093302, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182505

RESUMO

Instruments recording Energetic Neutral Atoms (ENAs) for space applications require thorough laboratory calibration in a dedicated test facility providing a neutral atom beam. Accurate knowledge of the neutral beam intensity and energy is central for the laboratory calibration procedure. However, until recently, the quantification of the neutral atom beam intensity in the low-energy range below a few 100 eV was based on relative measurements with standard detectors of approximately known detection efficiencies for neutral atoms. We report on the design and development of a novel calibration device dedicated to determining the ENA beam flux in an absolute manner in the energy range from 3 keV down to about 10 eV. This is realized by applying ENA scattering at a surface and coincident detection of scattered particles and created secondary electrons. Moreover, the neutral beam energy is determined by a time-of-flight measurement. The applied measurement principle relies on very low background signals. The observed background count rates are in the range 10-2 s for the individual channels and about 10-5 s for coincidence events. The background is, thus, at least two, typically four, orders of magnitude lower than the signal rate for neutral atom beams in the foreseen energy range. We demonstrate a concrete application using the absolute flux calibration of a laboratory neutralization stage.

16.
Adv Sci (Weinh) ; 9(20): e2200136, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521972

RESUMO

Ablation of materials in combination with element-specific analysis of the matter released is a widely used method to accurately determine a material's chemical composition. Among other methods, repetitive ablation using femto-second pulsed laser systems provides excellent spatial resolution through its incremental removal of nanometer thick layers. The method can be combined with high-resolution mass spectrometry, for example, laser ablation ionization mass spectrometry, to simultaneously analyze chemically the material released. With increasing depth of the volume ablated, however, secondary effects start to play an important role and the ablation geometry deviates substantially from the desired cylindrical shape. Consequently, primarily conical but sometimes even more complex, rather than cylindrical, craters are created. Their dimensions need to be analyzed to enable a direct correlation with the element-specific analytical signals. Here, a post-ablation analysis method is presented that combines generic polydimethylsiloxane-based molding of craters with the volumetric reconstruction of the crater's inverse using X-ray computed tomography. Automated analysis yields the full, sub-micron accurate anatomy of the craters, thereby a scalable and generic method to better understand the fundamentals underlying ablation processes applicable to a wide range of materials. Furthermore, it may serve toward a more accurate determination of heterogeneous material's composition for a variety of applications without requiring time- and labor-intensive analyses of individual craters.


Assuntos
Terapia a Laser , Lasers , Espectrometria de Massas/métodos , Tomografia Computadorizada por Raios X
17.
Astrobiology ; 22(4): 369-386, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35196459

RESUMO

The investigation of chemical composition on planetary bodies without significant sample processing is of importance for nearly every mission aimed at robotic exploration. Moreover, it is a necessary tool to achieve the longstanding goal of finding evidence of life beyond Earth, for example, possibly preserved microbial remains within martian sediments. Our Laser Ablation Ionization Mass Spectrometer (LIMS) is a compact time-of-flight mass spectrometer intended to investigate the elemental, isotope, and molecular composition of a wide range of solid samples, including e.g., low bulk density organic remains in microfossils. Here, we present an overview of the instrument and collected chemical spectrometric data at the micrometer level from a Precambrian chert sample (1.88 Ga Gunflint Formation, Ontario, Canada), which is considered to be a martian analogue. Data were collected from two distinct zones-a silicified host area and a carbon-bearing microfossil assemblage zone. We performed these measurements using an ultrafast pulsed laser system (pulse width of ∼180 fs) with multiple wavelengths (infrared [IR]-775 nm, ultraviolet [UV]-387 nm, UV-258 nm) and using a pulsed high voltage on the mass spectrometer to reveal small organic signals. We investigated (1) the chemical composition of the sample and (2) the different laser wavelengths' performance to provide chemical depth profiles in silicified media. Our key findings are as follows: (1) microfossils from the Gunflint chert reveal a distinct chemical composition compared with the host mineralogy (we report the identification of 24 elements in the microfossils); (2) detection of the pristine composition of microfossils and co-occurring fine chemistry (rare earth elements) requires utilization of the depth profiling measurement protocol; and (3) our results show that, for analysis of heterogeneous material from siliciclastic deposits, siliceous sinters, and cherts, the most suitable wavelength for laser ablation/Ionization is UV-258 nm.


Assuntos
Fósseis , Marte , Meio Ambiente Extraterreno , Isótopos , Espectrometria de Massas
18.
Front Artif Intell ; 4: 668163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497998

RESUMO

In this contribution, we present results of non-linear dimensionality reduction and classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-of-flight mass spectrometer developed for in situ space applications. We discuss the data generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS mass spectra. Further, we define topological biosignatures identified for Precambrian Gunflint microfossils by projecting the recorded fs-LIMS intensity space into low dimensions. Two distinct subtypes of microfossil-related spectra, a layer of organic contamination and inorganic quartz matrix were identified using the fs-LIMS data. The topological analysis applied to the fs-LIMS data allows to gain additional knowledge from large datasets, formulate hypotheses and quickly generate insights from spectral data. Our contribution illustrates the utility of applying spatially resolved mass spectrometry in combination with topology-based analytics in detecting signatures of early (primitive) life. Our results indicate that fs-LIMS, in combination with topological methods, provides a powerful analytical framework and could be applied to the study of other complex mineralogical samples.

19.
Nanomaterials (Basel) ; 10(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085559

RESUMO

Low energy ion measurements in the vicinity of a comet have provided us with important information about the planet's evolution. The calibration of instruments for thermal ions in the laboratory plays a crucial role when analysing data from in-situ measurements in space. A new low energy ion source based on carbon nanotube electron emitters was developed for calibrating the ion-mode of mass spectrometers or other ion detectors. The electron field emission (FE) properties of carbon nanotubes (CNTs) for H2, He, Ar, O2, and CO2 gases were tested in the experiments. H2, He, Ar, and CO2 adsorbates could change the FE temporarily at pressures from10-6 Pa to10-4 Pa. The FE of CNT remains stable in Ar and increases in H2, but degrades in He, O2, and CO2. All gas adsorbates lead to temporary degradation after working for prolonged periods. The ion current of the ion source is measured by using a Faraday cup and the sensitivity is derived from this measurement. The ion currents for the different gases were around 10 pA (corresponding to 200 ions/cm3 s) and an energy of ~28 eV could be observed.

20.
J Mass Spectrom ; 55(12): e4660, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33006261

RESUMO

Accurate isotope ratio measurements are of high importance in various scientific fields, ranging from radio isotope geochronology of solids to studies of element isotopes fractionated by living organisms. Instrument limitations, such as unresolved isobaric inferences in the mass spectra, or cosampling of the material of interest together with the matrix material may reduce the quality of isotope measurements. Here, we describe a method for accurate isotope ratio measurements using our laser ablation ionization time-of-flight mass spectrometer (LIMS) that is designed for in situ planetary research. The method is based on chemical depth profiling that allows for identifying micrometer scale inclusions embedded in surrounding rocks with different composition inside the bulk of the sample. The data used for precise isotope measurements are improved using a spectrum cleaning procedure that ensures removal of low quality spectra. Furthermore, correlation of isotopes of an element is used to identify and reject the data points that, for example, do not belong to the species of interest. The measurements were conducted using IR femtosecond laser irradiation focused on the sample surface to a spot size of ~12 µm. Material removal was conducted for a predefined number of laser shots, and time-of-flight mass spectra were recorded for each of the ablated layers. Measurements were conducted on NIST SRM 986 Ni isotope standard, trevorite mineral, and micrometer-sized inclusions embedded in aragonite. Our measurements demonstrate that element isotope ratios can be measured with accuracies and precision at the permille level, exemplified by the analysis of B, Mg, and Ni element isotopes. The method applied will be used for in situ investigation of samples on planetary surfaces, for accurate quantification of element fractionation induced by, for example, past or present life or by geochemical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA