Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262408

RESUMO

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Assuntos
Proteínas de Ligação a DNA , Desenvolvimento Embrionário , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Animais , Camundongos , Extremidades/crescimento & desenvolvimento
2.
Chemphyschem ; 25(6): e202400184, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488206

RESUMO

The front cover artwork is provided by Dr habil. Izabella Jastrzebska's group from the University of Bialystok, Poland. The image shows a polymeric network with molecular rotors (MR) as crosslinks. The MR rotation is slowed or inhibited when a molecule of stored gas is placed inside the polymer material. Read the full text of the Research Article at 10.1002/cphc.202300793.

3.
Chemphyschem ; 25(6): e202300793, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38259120

RESUMO

In this paper, we report a new generation of polymeric networks as potential functional material based on changes in molecular dynamics in the solid state. The material is obtained by free radical polymerization of a diacrylate derivative bearing a steroid (stator) and a 1,4-diethynyl-phenylene-d4 fragment (rotator). Polymer research using the PALS technique complements the knowledge about nanostructural changes occurring in the system in the temperature range -115 °C - +190 °C. It indicates the presence of two types of free nanovolumes in the system and the occurrence of phase transitions. The polymer is characterized using 1 H NMR, 2 H Solid Echo NMR, ATR-FTIR and Raman spectroscopies, thermal analysis, and porosimetry. It is proved that the applied procedure leads to the formation of a novel porous organic material containing multiple molecular rotors.

4.
J Org Chem ; 89(3): 1648-1656, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38241473

RESUMO

A new synthetic route to 25-hydroxy-provitamin D3 was elaborated. The synthesis consists of direct hydroxylation at C-25 of 7-dehydrocholesterol hetero Diels-Alder adducts. The adducts were prepared by [4 + 2] cycloaddition of azadienophiles to the steroidal diene. The hydroxylation reactions of adducts were carried out with different dioxiranes or with chromyl trifluoroacetate. The byproducts of these reactions were isolated and identified. The strengths and weaknesses of hydroxylation methods with different oxidizing agents were discussed.

5.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853998

RESUMO

Deep learning approaches have made significant advances in predicting cell type-specific chromatin patterns from the identity and arrangement of transcription factor (TF) binding motifs. However, most models have been applied in unperturbed contexts, precluding a predictive understanding of how chromatin state responds to TF perturbation. Here, we used transfer learning to train and interpret deep learning models that use DNA sequence to predict, with accuracy approaching experimental reproducibility, how the concentration of two dosage-sensitive TFs (TWIST1, SOX9) affects regulatory element (RE) chromatin accessibility in facial progenitor cells. High-affinity motifs that allow for heterotypic TF co-binding and are concentrated at the center of REs buffer against quantitative changes in TF dosage and strongly predict unperturbed accessibility. In contrast, motifs with low-affinity or homotypic binding distributed throughout REs lead to sensitive responses with minimal contributions to unperturbed accessibility. Both buffering and sensitizing features show signatures of purifying selection. We validated these predictive sequence features using reporter assays and showed that a biophysical model of TF-nucleosome competition can explain the sensitizing effect of low-affinity motifs. Our approach of combining transfer learning and quantitative measurements of the chromatin response to TF dosage therefore represents a powerful method to reveal additional layers of the cis-regulatory code.

6.
bioRxiv ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39071420

RESUMO

While critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here we bypass the need for sequence-specific transcription factors and recruit activators directly using CARGO-VPR, an approach for targeting dCas9-VPR using a multiplexed array of RNA guides. We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible by single dCas9. We utilize CARGO-VPR across the Prdm8-Fgf5 locus in mESCs, where neither gene is expressed. We demonstrate that while activator recruitment to any tested region results in transcriptional induction of at least one gene, the expression level strongly depends on the genomic distance between the promoter and activator recruitment site. However, the expression-distance relationship for each gene scales distinctly in a manner not attributable to differences in 3D contact frequency, promoter DNA sequence or presence of the repressive chromatin marks at the locus.

7.
Elife ; 132024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483448

RESUMO

Genome-wide association studies (GWAS) identified thousands of genetic variants linked to phenotypic traits and disease risk. However, mechanistic understanding of how GWAS variants influence complex morphological traits and can, in certain cases, simultaneously confer normal-range phenotypic variation and disease predisposition, is still largely lacking. Here, we focus on rs6740960, a single nucleotide polymorphism (SNP) at the 2p21 locus, which in GWAS studies has been associated both with normal-range variation in jaw shape and with an increased risk of non-syndromic orofacial clefting. Using in vitro derived embryonic cell types relevant for human facial morphogenesis, we show that this SNP resides in an enhancer that regulates chondrocytic expression of PKDCC - a gene encoding a tyrosine kinase involved in chondrogenesis and skeletal development. In agreement, we demonstrate that the rs6740960 SNP is sufficient to confer chondrocyte-specific differences in PKDCC expression. By deploying dense landmark morphometric analysis of skull elements in mice, we show that changes in Pkdcc dosage are associated with quantitative changes in the maxilla, mandible, and palatine bone shape that are concordant with the facial phenotypes and disease predisposition seen in humans. We further demonstrate that the frequency of the rs6740960 variant strongly deviated among different human populations, and that the activity of its cognate enhancer diverged in hominids. Our study provides a mechanistic explanation of how a common SNP can mediate normal-range and disease-associated morphological variation, with implications for the evolution of human facial features.


Assuntos
Condrogênese , Estudo de Associação Genômica Ampla , Animais , Humanos , Camundongos , Condrogênese/genética , Face , Cabeça , Crânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA