Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
J Cell Mol Med ; 27(1): 36-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512344

RESUMO

The molecular mechanism for the microgravity-induced decrease in bone formation remains unclear and there is a lack of effective specific preventative therapies. We recently reported that primary cilia of osteoblasts became shorter and even disappeared when the cells were exposed to random positioning machine (RPM)-simulated microgravity and that the microgravity-induced loss of osteogenic potential of osteoblasts could be attenuated when the resorption of primary cilia was prevented by treatment with 0.1 µM cytochalasin D. In the current study, it was further found that the loss of the osteogenic capacity of rat calvarial osteoblasts (ROBs) was associated with the inhibition of the BMP-2/Smad1/5/8 signalling pathway, of which most of the signalling proteins including BMP-2, BMPRII, Smad1/5/8 and p-Smad1/5/8 were found localized to primary cilia. Accompanying the resorption of primary cilia following the cells being exposed to simulated microgravity, the expression levels of these signalling proteins were reduced significantly. Furthermore, the expression of miRNA-129-3p, a microRNA previously reported to control cilium biogenesis, was found to be reduced quickly and changed in a similar tendency with the length of primary cilia. Moreover, overexpression of miRNA-129-3p in ROBs significantly attenuated microgravity-induced inhibition of BMP-2 signalling and loss of osteogenic differentiation and mineralization. These results indicated the important role of miRNA-129-3p in microgravity-induced resorption of primary cilia of osteoblasts and the potential of replenishing the miRNA-129-3p as an effective countermeasure against microgravity-induced loss of primary cilia and impairment of osteoblast function.


Assuntos
MicroRNAs , Ausência de Peso , Ratos , Animais , Osteogênese/genética , Cílios/metabolismo , Ausência de Peso/efeitos adversos , Diferenciação Celular/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo
2.
J Cell Physiol ; 238(11): 2692-2709, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796139

RESUMO

Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.


Assuntos
Cílios , Osteoblastos , Osteogênese , Estresse Oxidativo , Canais de Cátion TRPV , Ausência de Peso , Animais , Ratos , Cílios/metabolismo , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Células Cultivadas , Morfolinas/farmacologia , Pirróis/farmacologia , Gravitação
3.
FASEB J ; 36(6): e22376, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35616355

RESUMO

Pulsed electromagnetic fields (PEMFs) have long been recognized being safe and effective in treating bone fracture nonunion and osteoporosis. However, the mechanism of osteogenic action of PEMFs is still unclear. While primary cilia are reported to be a sensory organelle for PEMFs, and nitric oxide (NO) plays an indispensable role in osteogenic effect of PEMFs, the relationship between NO and primary cilia is unknown. In this study, effects of treatment with 50 Hz 0.6 mT PEMFs on osteogenic differentiation and mineralization, NO secretion, and ciliary location of specific proteins were examined in rat calvarial osteoblasts (ROBs) with normal or abrogated primary cilia. It was found that PEMFs stimulated the osteogenic differentiation by activating the NOS/NO/sGC/cGMP/PKG signaling pathway, which need the existence of primary cilia. All components of the signaling pathway including iNOS, eNOS, sGC, PKG-1, and PKG-2 were localized to primary cilia, and eNOS was phosphorylated inside the primary cilia. Besides, primary cilia were elongated significantly by PEMF treatment and changed dynamically with the activation NO/cGMP pathway. When the pathway was blocked by L-NAME, PEMFs could no longer elongate the primary cilia and stimulate the osteoblastic differentiation. Thus, this study for the first time observed activation of the NO/cGMP signaling pathway in ciliary compartment of osteoblasts, and PEMFs could not stimulate the osteoblastic differentiation if the NO signaling pathway was blocked or the ciliogenesis was inhibited. Our findings indicate the interdependent relationship between NO and primary cilia in the PEMF-promoted osteogenesis.


Assuntos
Campos Eletromagnéticos , Osteogênese , Animais , Diferenciação Celular , Cílios/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Osteoblastos/metabolismo , Ratos , Transdução de Sinais
4.
J Cell Physiol ; 237(1): 965-982, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514592

RESUMO

Previous studies have shown that administration of antimetabolite methotrexate (MTX) caused a reduced trabecular bone volume and increased marrow adiposity (bone/fat switch), for which the underlying molecular mechanisms and recovery potential are unclear. Altered expression of microRNAs (miRNAs) has been shown to be associated with dysregulation of osteogenic and/or adipogenic differentiation by disrupting target gene expression. First, the current study confirmed the bone/fat switch following MTX treatment in precursor cell culture models in vitro. Then, using a rat intensive 5-once daily MTX treatment model, this study aimed to identify miRNAs associated with bone damage and recovery (in a time course over Days 3, 6, 9, and 14 after the first MTX treatment). RNA isolated from bone samples of treated and control rats were subjected to miRNA array and reverse transcription-polymerase chain reaction validation, which identified five upregulated miRNA candidates, namely, miR-155-5p, miR-154-5p, miR-344g, miR-6215, and miR-6315. Target genes of these miRNAs were predicted using TargetScan and miRDB. Then, the protein-protein network was established via STRING database, after which the miRNA-key messenger RNA (mRNA) network was constructed by Cytoscape. Functional annotation and pathway enrichment analyses for miR-6315 were performed by DAVID database. We found that TGF-ß signaling was the most significantly enriched pathway and subsequent dual-luciferase assays suggested that Smad2 was the direct target of miR-6315. Our current study showed that miR-6315 might be a vital regulator involved in bone and marrow fat formation. Also, this study constructed a comprehensive miRNA-mRNA regulatory network, which may contribute to the pathogenesis/prognosis of MTX-associated bone loss and bone marrow adiposity.


Assuntos
MicroRNAs , Animais , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Metotrexato/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
5.
J Cell Mol Med ; 25(23): 10825-10836, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34783166

RESUMO

Osteoporosis is characterized by increased bone fragility, and the drugs used at present to treat osteoporosis can cause adverse reactions. Gentiopicroside (GEN), a class of natural compounds with numerous biological activities such as anti-resorptive properties and protective effects against bone loss. Therefore, the aim of this work was to explore the effect of GEN on bone mesenchymal stem cells (BMSCs) osteogenesis for a potential osteoporosis therapy. In vitro, BMSCs were exposed to GEN at different doses for 2 weeks, whereas in vivo, ovariectomized osteoporosis was established in mice and the therapeutic effect of GEN was evaluated for 3 months. Our results in vitro showed that GEN promoted the activity of alkaline phosphatase, increased the calcified nodules in BMSCs and up-regulated the osteogenic factors (Runx2, OSX, OCN, OPN and BMP2). In vivo, GEN promoted the expression of Runx2, OCN and BMP2, increased the level of osteogenic parameters, and accelerated the osteogenesis of BMSCs by activating the BMP pathway and Wnt/ß-catenin pathway, effect that was inhibited using the BMP inhibitor Noggin and Wnt/ß-catenin inhibitor DKK1. Silencing the ß-catenin gene and BMP2 gene blocked the osteogenic differentiation induced by GEN in BMSCs. This block was also observed when only ß-catenin was silenced, although the knockout of BMP2 did not affect ß-catenin expression induced by GEN. Therefore, GEN promotes BMSC osteogenesis by regulating ß-catenin-BMP signalling, providing a novel strategy in the treatment of osteoporosis.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Glucosídeos Iridoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/metabolismo , Proteínas Recombinantes/metabolismo , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
6.
J Cell Mol Med ; 25(1): 561-574, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210833

RESUMO

pH-magnetic dual-responsive nanocomposites have been widely used in drug delivery and gene therapy. Recently, a polypseudorotaxane functionalized magnetic nanoparticle (MNP) was developed by synthesizing the magnetic nanoparticles with cyclodextrin (CD) molecules (CDMNP) via polyethylene glycol (PEG) (CDMNP-PEG-CD). The purpose of this study was to explore the antigenicity and immunogenicity of the nanoparticles in vivo prior to their further application explorations. Here, nanoparticles were assessed in vivo for retention, bio-distribution and immuno-reactivity. The results showed that, once administered intravenously, CDMNP-PEG-CD induced a temporary blood monocyte response and was cleared effectively from the body through the urine system in mice. The introduction of ß-CD and PEG/ß-CD polypseudorotaxane on SiO2 magnetic nanoparticles (SOMNP) limited particle intramuscular dispersion after being injected into mouse gastrocnemius muscle (GN), which led to the prolonged local inflammation and muscle toxicity by CDMNP and CDMNP-PEG-CD. In addition, T cells were found to be more susceptible for ß-CD-modified CDMNP; however, polypseudorotaxane modification partially attenuated ß-CD-induced T cell response in the implanted muscle. Our results suggested that CDMNP-PEG-CD nanoparticles or the decomposition components have potential to prime antigen-presenting cells and to break the muscle autoimmune tolerance.


Assuntos
Ciclodextrinas/química , Nanopartículas/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Espectroscopia de Ressonância Magnética
7.
J Cell Physiol ; 236(8): 5966-5979, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33438203

RESUMO

Intensive use of methotrexate (MTX) and/or dexamethasone (DEX) for treating childhood malignancies is known to cause chondrocyte apoptosis and growth plate dysfunction leading to bone growth impairments. However, mechanisms remain vague and it is unclear whether MTX and DEX combination treatment could have additive effects in the growth plate defects. In this study, significant cell apoptosis was induced in mature ATDC5 chondrocytes after treatment for 48 h with 10-5 M MTX and/or 10-6 M DEX treatment. PCR array assays with treated cells plus messenger RNA and protein expression confirmation analyses identified chemokine CXCL12 having the most prominent induction in each treatment group. Conditioned medium from treated chondrocytes stimulated migration of RAW264.7 osteoclast precursor cells and formation of osteoclasts, and these stimulating effects were inhibited by the neutralizing antibody for CXCL12. Additionally, while MTX and DEX combination treatment showed some additive effects on apoptosis induction, it did not have additive or counteractive effects on CXCL12 expression and its functions in enhancing osteoclastic recruitment and formation. In young rats treated acutely with MTX, there was increased expression of CXCL12 in the tibial growth plate, and more resorbing chondroclasts were found present at the border between the hypertrophic growth plate and metaphysis bone. Thus, the present study showed an association between induced chondrocyte apoptosis and stimulated osteoclastic migration and formation following MTX and/or DEX treatment, which could be potentially or at least partially linked molecularly by CXCL12 induction. This finding may contribute to an enhanced mechanistic understanding of bone growth impairments following MTX and/or DEX therapy.


Assuntos
Quimiocina CXCL12/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Dexametasona/farmacologia , Metotrexato/farmacologia , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Camundongos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ratos
8.
J Cell Physiol ; 236(5): 3740-3751, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33078406

RESUMO

Cancer chemotherapy can significantly impair the bone formation and cause myelosuppression; however, their recovery potentials and mechanisms remain unclear. This study investigated the roles of the ß-catenin signaling pathway in bone and bone marrow recovery potentials in rats treated with antimetabolite methotrexate (MTX) (five once-daily injections, 0.75 mg/kg) with/without ß-catenin inhibitor indocyanine green (ICG)-001 (oral, 200 mg/kg/day). ICG alone reduced trabecular bone volume and bone marrow cellularity. In MTX-treated rats, ICG suppressed bone volume recovery on Day 11 after the first MTX injection. ICG exacerbated MTX-induced decreases on Day 9 osteoblast numbers on bone surfaces, their formation in vitro from bone marrow stromal cells (osteogenic differentiation/mineralization), as well as expression of osteogenesis-related markers Runx2, Osx, and OCN in bone, and it suppressed their subsequent recoveries on Day 11. On the other hand, ICG did not affect MTX-induced increased osteoclast density and the level of the osteoclastogenic signal (RANKL/OPG expression ratio) in bone, suggesting that ICG inhibition of ß-catenin does nothing to abate the increased bone resorption induced by MTX. ICG also attenuated bone marrow cellularity recovery on Day 11, which was associated with the suppressed recovery of CD34+ or c-Kit+  hematopoietic progenitor cell contents. Thus, ß-catenin signaling is important for osteogenesis and hematopoiesis recoveries following MTX chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Hematopoese , Metotrexato/uso terapêutico , Osteogênese , Transdução de Sinais , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Medula Óssea/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Metotrexato/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteoprotegerina/metabolismo , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Ligante RANK/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
9.
Cell Biol Int ; 45(8): 1685-1697, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33811714

RESUMO

Electromagnetic fields (EMFs) have emerged as a versatile means for osteoporosis treatment and prevention. However, its optimal application parameters are still elusive. Here, we optimized the frequency parameter first by cell culture screening and then by animal experiment validation. Osteoblasts isolated from newborn rats (ROBs) were exposed 90 min/day to 1.8 mT SEMFs at different frequencies (ranging from 10 to 100 Hz, interval of 10 Hz). SEMFs of 1.8 mT inhibited ROB proliferation at 30, 40, 50, 60 Hz, but increased proliferation at 10, 70, 80 Hz. SEMFs of 10, 50, and 70 Hz promoted ROB osteogenic differentiation and mineralization as shown by alkaline phosphatase (ALP) activity, calcium content, and osteogenesis-related molecule expression analyses, with 50 Hz showing greater effects than 10 and 70 Hz. Treatment of young rats with 1.8 mT SEMFs at 10, 50, or 100 Hz for 2 months significantly increased whole-body bone mineral density (BMD) and femur microarchitecture, with the 50 Hz group showing the greatest effect. Furthermore, 1.8 mT SEMFs extended primary cilia lengths of ROBs and increased protein kinase A (PKA) activation also in a frequency-dependent manner, again with 50 Hz SEMFs showing the greatest effect. Pretreatment of ROBs with the PKA inhibitor KT5720 abolished the effects of SEMFs to increase primary cilia length and promote osteogenic differentiation/mineralization. These results indicate that 1.8 mT SEMFs have a frequency window effect in promoting osteogenic differentiation/mineralization in ROBs and bone formation in growing rats, which involve osteoblast primary cilia length extension and PKA activation.


Assuntos
Diferenciação Celular/fisiologia , Cílios/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Campos Eletromagnéticos , Osteoblastos/fisiologia , Osteogênese/fisiologia , Animais , Animais Recém-Nascidos , Capilares/citologia , Capilares/fisiologia , Células Cultivadas , Ativação Enzimática/fisiologia , Feminino , Ratos , Ratos Wistar , Crânio/citologia , Crânio/fisiologia
10.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502383

RESUMO

Chemotherapy-induced intestinal mucositis, a painful debilitating condition affecting up to 40-100% of patients undergoing chemotherapy, can reduce the patients' quality of life, add health care costs and even postpone cancer treatment. In recent years, the relationships between intestinal microbiota dysbiosis and mucositis have drawn much attention in mucositis research. Chemotherapy can shape intestinal microbiota, which, in turn, can aggravate the mucositis through toll-like receptor (TLR) signaling pathways, leading to an increased expression of inflammatory mediators and elevated epithelial cell apoptosis but decreased epithelial cell differentiation and mucosal regeneration. This review summarizes relevant studies related to the relationships of mucositis with chemotherapy regimens, microbiota, TLRs, inflammatory mediators, and intestinal homeostasis, aiming to explore how gut microbiota affects the pathogenesis of mucositis and provides potential new strategies for mucositis alleviation and treatment and development of new therapies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Tratamento Farmacológico/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/fisiopatologia , Disbiose/microbiologia , Disbiose/fisiopatologia , Fluoruracila/farmacologia , Microbioma Gastrointestinal/fisiologia , Homeostase , Humanos , Intestinos/microbiologia , Microbiota/efeitos dos fármacos , Mucosite/induzido quimicamente , Qualidade de Vida , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Receptores Toll-Like/fisiologia
11.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681655

RESUMO

Intensive methotrexate (MTX) treatment for childhood malignancies decreases osteogenesis but increases adipogenesis from the bone marrow stromal cells (BMSCs), resulting in bone loss and bone marrow adiposity. However, the underlying mechanisms are unclear. While microRNAs (miRNAs) have emerged as bone homeostasis regulators and miR-542-3p was recently shown to regulate osteogenesis in a bone loss context, the role of miR-542-3p in regulating osteogenesis and adipogenesis balance is not clear. Herein, in a rat MTX treatment-induced bone loss model, miR-542-3p was found significantly downregulated during the period of bone loss and marrow adiposity. Following target prediction, network construction, and functional annotation/ enrichment analyses, luciferase assays confirmed sFRP-1 and Smurf2 as the direct targets of miR-542-3p. miRNA-542-3p overexpression suppressed sFRP-1 and Smurf2 expression post-transcriptionally. Using in vitro models, miR-542-3p treatment stimulated osteogenesis but attenuated adipogenesis following MTX treatment. Subsequent signalling analyses revealed that miR-542-3p influences Wnt/ß-catenin and TGF-ß signalling pathways in osteoblastic cells. Our findings suggest that MTX treatment-induced bone loss and marrow adiposity could be molecularly linked to miR-542-3p pathways. Our results also indicate that miR-542-3p might be a therapeutic target for preserving bone and attenuating marrow fat formation during/after MTX chemotherapy.


Assuntos
Adipogenia/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Metotrexato/farmacologia , MicroRNAs/metabolismo , Osteogênese/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt/efeitos dos fármacos
12.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281266

RESUMO

Bone marrow stromal cells (BMSCs) are multipotent cells which can differentiate into chondrocytes, osteoblasts, and fat cells. Under pathological stress, reduced bone formation in favour of fat formation in the bone marrow has been observed through a switch in the differentiation of BMSCs. The bone/fat switch causes bone growth defects and disordered bone metabolism in bone marrow, for which the mechanisms remain unclear, and treatments are lacking. Studies suggest that small non-coding RNAs (microRNAs) could participate in regulating BMSC differentiation by disrupting the post-transcription of target genes, leading to bone/fat formation changes. This review presents an emerging concept of microRNA regulation in the bone/fat formation switch in bone marrow, the evidence for which is assembled mainly from in vivo and in vitro human or animal models. Characterization of changes to microRNAs reveals novel networks that mediate signalling and factors in regulating bone/fat switch and homeostasis. Recent advances in our understanding of microRNAs in their control in BMSC differentiation have provided valuable insights into underlying mechanisms and may have significant potential in development of new therapeutics.


Assuntos
Adipogenia/genética , Adipogenia/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Sinalização do Cálcio/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Marcadores Genéticos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Transdução de Sinais/genética , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/genética
13.
J Cell Mol Med ; 24(16): 8950-8961, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32583517

RESUMO

The transcriptional repressor Bmi-1 is involved in cell-cycle regulation and cell senescence, the deficiency of which has been shown to cause oxidative stress. This study investigated whether Bmi-1 deficiency plays a role in promoting disc degeneration and the effect of treatment with antioxidant N-acetylcysteine (NAC) on intervertebral disc degeneration. Bmi-1-/- mice were treated with the antioxidant NAC, supplied in drinking water (Bmi-1-/- +NAC). For in vitro experiments, mouse intervertebral discs were cultured under low oxygen tension and serum-limiting conditions in the presence of tumour necrosis factor α and interleukin 1ß in order to mimic degenerative insult. Disc metabolism parameters in these in vitro and in vivo studies were evaluated by histopathological, immunohistochemical and molecular methods. Bmi-1-/- mice showed lower collagen Ⅱ and aggrecan levels and higher collagen Ⅹ levels than wild-type and Bmi-1-/- +NAC mice. Bmi-1-/- mice showed significantly lower superoxide dismutase (SOD)-1, SOD-2, glutathione peroxidase (GPX)-1 and GPX-3 levels than their wild-type littermates and Bmi-1-/- + NAC mice. Relative to Bmi-1-/- mice, the control and Bmi-1-/- +NAC mice showed significantly lower p16, p21, and p53 levels. These results demonstrate that Bmi-1 plays an important role in attenuating intervertebral disc degeneration in mice by inhibiting oxidative stress and cell apoptosis.


Assuntos
Antioxidantes/fisiologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Complexo Repressor Polycomb 1/deficiência , Proteínas Proto-Oncogênicas/deficiência , Acetilcisteína/farmacologia , Agrecanas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Colágeno/metabolismo , Interleucina-1beta/metabolismo , Disco Intervertebral/efeitos dos fármacos , Disco Intervertebral/metabolismo , Camundongos , Técnicas de Cultura de Órgãos/métodos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
J Physiol ; 597(21): 5161-5177, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506936

RESUMO

KEY POINTS: There is a close relationship between skeletal muscle physiology and Ca2+ /calmodulin (CaM) signalling. Despite the effects of Ca2+ /CaM signalling on immune and inflammatory responses having been extensively explored, few studies have investigated the role of CaM pathway activation on the post-injury muscle inflammatory response. In this study, we investigated the role of CaM-dependent signalling in muscle inflammation in cardiotoxin induced myoinjuries in mice. The Ca2+ /calmodulin-dependent protein kinase II (CaMII), Ca2+ /calmodulin-dependent protein kinase IV (CaMKIV), and nuclear factor of activated T cells (NFAT) pathways are likely to be simultaneously activated in muscle cells and in infiltrating lymphocytes and to regulate the immune behaviours of myofibres in an inflammatory environment, and these pathways ultimately affect the outcome of muscle inflammation. ABSTRACT: Calcium/calmodulin (Ca2+ /CaM) signalling is essential for immune and inflammatory responses in tissues. However, it is unclear if Ca2+ /CaM signalling interferes with muscle inflammation. Here we investigated the roles of CaM-dependent signalling in muscle inflammation in mice that had acute myoinjuries in the tibialis anterior muscle induced by intramuscular cardiotoxin (CTX) injections and received intraperitoneal injections of either the CaM inhibitor calmidazolium chloride (CCL) or CaM agonist calcium-like peptide 1 (CALP1). Multiple inflammatory parameters, including muscle autoantigens and toll-like receptors, mononuclear cell infiltration, cytokines and chemokines associated with peripheral muscle inflammation, were examined after the injury and treatment. CALP1 treatment enhanced intramuscular infiltration of monocytes/macrophages into the damaged tibialis anterior muscle and up-regulated mRNA and protein levels of muscle autoantigens (Mi-2, HARS and Ku70) and Toll-like receptor 3 (TLR3), and mRNA levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), Monocyte chemoattractant protein-1 (MCP1), Monocyte chemoattractant protein-3 (MCP3) and Macrophage inflammatory protein-1(MIP-1α) in damaged muscle. In contrast, CCL treatment decreased the intramuscular cell infiltration and mRNA levels of the inflammatory mediators. After CALP1 treatment, a substantial up-regulation in Ca2+ /calmodulin-dependent protein kinase II (CaMKII), Ca2+ /calmodulin-dependent protein kinase IV (CaMKIV) and nuclear factor of activated T cells (NFAT) activity was detected in CD45+ cells isolated from the damaged muscle. More pro-inflammatory F4/80+ Ly-6C+ cells were detected in CD45-gated cells after CALP1 treatment than in those after CCL treatment or no treatment. Consistently, in interferon-γ-stimulated cultured myoblasts and myotubes, CALP1 treatment up-regulated the activities of CaMKII, CaMKIV and NFAT, and levels of class I/II major histocompatibility complexes (MHC-I/II) and TLR3. Our findings demonstrated that CaM-dependent signalling pathways mediate the injury-induced acute muscle inflammatory response.


Assuntos
Calmodulina/metabolismo , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Regulação para Cima/fisiologia
15.
J Cell Physiol ; 234(7): 10771-10781, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30480804

RESUMO

The purpose of this study was to develop a novel approach to treat bone osteosarcoma using a multipurpose scaffold aiming for local drug delivery. The slowly releasing microspheres was designed to deliver the chemotherapy drug adriamycin (ADM) and a decellularized (D) periosteum scaffold (which is known to be able to promote bone regeneration) was used to carry these microspheres. D-periosteum was obtained by physical and chemical decellularization. Histological results showed that the cellular components were effectively removed. The D-periosteum showed an excellent cytocompatibility and the ability to promote adhesion and growth of fibroblasts. Two kinds of slowly releasing microspheres, adriamycin gelatin microspheres (ADM-GMS) and adriamycin poly (dl-lactide-co-glycolide) gelatin microspheres (ADM-PLGA-GMS), were prepared and anchored to D-periosteum, resulting in two types of drug-releasing regenerative scaffolds. The effectiveness of these two scaffolds in killing human osteosarcoma cells was tested by evaluating cell viability overtime of the cancer cells cultured with the scaffolds. In summary, a gelatin/decellularized periosteum-based biologic scaffold material was designed aiming for local delivery of chemotherapy drugs for osteosarcoma, with the results showing ability of the scaffolds in sustaining release of the cancer drug and in suppressing growth of the cancer cells in vitro.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Gelatina/química , Osteossarcoma/tratamento farmacológico , Periósteo/citologia , Alicerces Teciduais , Animais , Antibióticos Antineoplásicos/efeitos adversos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Doxorrubicina/química , Humanos , Masculino , Microesferas , Osteossarcoma/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Sprague-Dawley , Fatores de Tempo
16.
J Cell Physiol ; 234(9): 14445-14459, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30637723

RESUMO

Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.

17.
J Cell Physiol ; 234(6): 7903-7914, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515810

RESUMO

Wound healing is a complex but a fine-tuned biological process in which human skin has the ability to regenerate itself following damage. However, in particular conditions such as deep burn or diabetes the process of wound healing is compromised. Despite investigations on the potency of a wide variety of stem cells for wound healing, adipose-derived stem cells (ASCs) seem to possess the least limitations for clinical applications, and literature showed that ASCs can improve the process of wound healing very likely by promoting angiogenesis and/or vascularisation, modulating immune response, and inducing epithelialization in the wound. In the present review, advantages and disadvantages of various stem cells which can be used for promoting wound healing are discussed. In addition, potential mechanisms of action by which ASCs may accelerate wound healing are summarised. Finally, clinical studies applying ASCs for wound healing and the associated limitations are reviewed.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia , Cicatrização/genética , Adipócitos/citologia , Diferenciação Celular/genética , Humanos , Neovascularização Fisiológica/genética , Reepitelização/genética , Pele/crescimento & desenvolvimento , Pele/metabolismo , Cicatrização/fisiologia
18.
J Cell Physiol ; 234(3): 2807-2821, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30067871

RESUMO

The application of pulsed electromagnetic fields (PEMFs) in the prevention and treatment of osteoporosis has long been an area of interest. However, the clinical application of PEMFs remains limited because of the poor understanding of the PEMF action mechanism. Here, we report that PEMFs promote bone formation by activating soluble adenylyl cyclase (sAC), cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and cAMP response element-binding protein (CREB) signaling pathways. First, it was found that 50 Hz 0.6 millitesla (mT) PEMFs promoted osteogenic differentiation of rat calvarial osteoblasts (ROBs), and that PEMFs activated cAMP-PKA-CREB signaling by increasing intracellular cAMP levels, facilitating phosphorylation of PKA and CREB, and inducing nuclear translocation of phosphorylated (p)-CREB. Blocking the signaling by adenylate cyclase (AC) and PKA inhibitors both abolished the osteogenic effect of PEMFs. Second, expression of sAC isoform was found to be increased significantly by PEMF treatment. Blocking sAC using sAC-specific inhibitor KH7 dramatically inhibited the osteogenic differentiation of ROBs. Finally, the peak bone mass of growing rats was significantly increased after 2 months of PEMF treatment with 90 min/day. The serum cAMP content, p-PKA, and p-CREB as well as the sAC protein expression levels were all increased significantly in femurs of treated rats. The current study indicated that PEMFs promote bone formation in vitro and in vivo by activating sAC-cAMP-PKA-CREB signaling pathway of osteoblasts directly or indirectly.


Assuntos
Inibidores Enzimáticos/farmacologia , Magnetoterapia , Osteogênese/efeitos da radiação , Osteoporose/terapia , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/genética , Adenilil Ciclases/farmacologia , Animais , Densidade Óssea/efeitos da radiação , Diferenciação Celular/efeitos da radiação , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Animais de Doenças , Fêmur/crescimento & desenvolvimento , Fêmur/patologia , Fêmur/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Osteoblastos/efeitos da radiação , Osteoporose/genética , Osteoporose/patologia , Ratos , Transdução de Sinais/efeitos da radiação
19.
J Cell Physiol ; 234(5): 7032-7039, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30317592

RESUMO

Long noncoding RNAs (lncRNAs) play a critical role in the initiation and progression of colorectal cancer (CRC), but little is known about the function of lncRNAs in the colorectal liver metastasis (CLM). This study was designed to identify specific lncRNAs correlating to liver metastasis of CRC, and to further assess their clinical value. Seventeen patients with primary CRC lesions, adjacent normal mucosa, and synchronous liver metastases lesions were divided into discovery set (six patients) and test set (11 patients). Transcriptome sequencing (RNAseq) was used to screen differential expression of lncRNAs in the discovery set. Based on bioinformatics data, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to verify the target lncRNA in test set. The relationships between target lncRNA and clinical values were analysed in an expanded validation set of additional 91 patients. 23 upregulated and 14 downregulated lncRNAs were detected for distinguishing synchronous liver metastases, primary CRC lesions from adjacent normal mucosa in the RNAseq set. The expression levels of four lncRNAs in the 37 lncRNA signature were verified by qRT-PCR in the test set. Compared with the paired normal mucosa, high expression levels of lnc-small-nucleolar RNA host gene 15 (SNHG15) were detected not only in primary CRC lesions but also in liver metastases lesions in the test set. Furthermore, in the expanded validation set, high expression of lnc-SNHG15 was significantly associated with lymph-node metastasis and liver metastasis (p < 0.05), and patients displaying high lncRNA-SNHG15 expression exhibited a shorter median overall survival duration than those displaying low expression (30.7 vs. 35.2 months; p = 0.003). Multivariate analyses demonstrated that lncRNA-SNHG15 overexpression may serve as a poor prognostic biomarker for CRC patients (p = 0.049; Cox's regression: 2.731). Lnc-SNHG15 overexpression was significantly associated with CLM and high-expression of lnc-SNHG15 in CRC was an independent predictor of poor survival.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , RNA Longo não Codificante/genética , Idoso , Neoplasias Colorretais/mortalidade , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Fatores de Risco , Regulação para Cima
20.
J Cell Physiol ; 234(9): 16549-16561, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30784063

RESUMO

Methotrexate (MTX), a widely used antimetabolite in paediatric cancer to treatment, has been widely reported to cause bone loss and bone marrow (BM) microvascular (particularly sinusoids) damage. Investigations must now investigate how MTX-induced bone loss and microvasculature damage can be attenuated/prevented. In the present study, we examined the potency of icariin, an herbal flavonoid, in reducing bone loss and the dilation/damage of BM sinusoids in rats caused by MTX treatment. Groups of young rats were treated with five daily MTX injections (0.75 mg/kg) with and without icariin oral supplementation until Day 9 after the first MTX injection. Histological analyses showed a significant reduction in the bone volume/tissue volume (BV/TV) fraction (%) and trabecular number in the metaphysis trabecular bone of MTX-treated rats, but no significant changes in trabecular thickness and trabecular spacing. However, the BV/TV (%) and trabecular number were found to be significantly higher in MTX + icariin-treated rats than those of MTX alone-treated rats. Gene expression analyses showed that icariin treatment maintained expression of osteogenesis-related genes but suppressed the induction of adipogenesis-related genes in bones of MTX-treated rats. In addition, icariin treatment attenuated MTX-induced dilation of BM sinusoids and upregulated expression of endothelial cell marker CD31 in the metaphysis bone of icariin + MTX-treated rats. Furthermore, in vitro studies suggest that icariin treatment can potentially enhance the survival of cultured rat sinusoidal endothelial cells against cytotoxic effect of MTX and promote their migration and tube formation abilities, which is associated with enhanced production of nitric oxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA