Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Microvasc Res ; 152: 104650, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38123064

RESUMO

RATIONALE: Numerous studies have established a robust association between bone morrow microvascular diseases and osteoporosis. This study sought to investigate the relationship between alterations in trans-cortical vessel (TCVs) and the onset of osteoporosis in various mouse models. METHODS: Aged mice, ovariectomized mice, and db/db mice, were utilized as osteoporosis models. TCVs in the tibia were detected using tissue clearing and light sheet fluorescence microscopy imaging. Femurs bone mass were analyzed using micro-CT scanning. Correlations between the number of TCVs and bone mass were analyzed using Pearson correlation analysis. RESULTS: All osteoporosis mouse models showed a significant reduction in the number of TCVs compared to the control group. Correlation analysis revealed a positive association between the number of TCVs and bone mass. TCVs were also expressed high levels of CD31 and EMCN proteins as type H vessels. CONCLUSIONS: This study underscores a consistent correlation between the number of TCVs and bone mass. Moreover, TCVs may serve as a potential biomarker for bone mass evaluation.


Assuntos
Osteoporose , Camundongos , Animais , Feminino , Humanos , Osteoporose/diagnóstico por imagem , Osteoporose/metabolismo , Densidade Óssea , Tíbia/diagnóstico por imagem , Tíbia/metabolismo , Ovariectomia
2.
BMC Anesthesiol ; 22(1): 152, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585483

RESUMO

BACKGROUND: Local anesthesia has been recommended for percutaneous endoscopic lumbar discectomy (PELD) in recent years; however, the efficacy, including oxidative stress, inflammatory reactions and ventilation effects, when intravenous dexmedetomidine (DEX) is administered during PELD has not been described. METHODS: Sixty adult patients undergoing PELD were randomly allocated to either an intravenous DEX sedation group (Group A) or a normal saline group (Group B). Respiratory data, including minute ventilation (MV), tidal volume (TV), and respiratory rate (RR), were recorded using a respiratory volume monitor (RVM), and peripheral oxygen saturation (SpO2) was monitored by pulse oximetry. The visual analog score (VAS) was used to assess the level of pain. The serum levels of inflammatory biomarkers including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were to assess inflammatory reactions. The serum levels of oxidative stress biomarkers including malondialdehyde (MDA) and glutathione peroxidase (GSH-PX) were also recorded to evaluate oxidative stress. RESULTS: There were no significant differences in RR, MV, TV and SpO2 between the two groups at any time point (P > 0.05). Group B exhibited lower serum levels of GSH-PX (P < 0.0001) and higher serum levels of MDA (p < 0.0001) than Group A at the end of surgery. Twenty-four hours after surgery, Group B exhibited higher serum levels of IL-6 (P = 0.0033), TNF-α (P = 0.0002), and MDA (P < 0.0001) and lower serum levels of GSH-PX (P < 0.0001) than Group A. In addition, Group A exhibited lower VAS (P < 0.0001) than Group B during surgery. CONCLUSIONS: DEX administration using RVM not only provides analgesia without ventilatory depression but also alleviates oxidative stress and inflammatory reactions in patients undergoing PELD.


Assuntos
Dexmedetomidina , Discotomia Percutânea , Deslocamento do Disco Intervertebral , Adulto , Analgésicos/farmacologia , Dexmedetomidina/farmacologia , Discotomia , Endoscopia , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/etiologia , Interleucina-6/sangue , Deslocamento do Disco Intervertebral/etiologia , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Dor/etiologia , Respiração , Estudos Retrospectivos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
3.
Cutan Ocul Toxicol ; 41(1): 1-10, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34711123

RESUMO

BACKGROUND: Increasing evidence has shown that the dysregulation of miRNAs is involved in the pathogenesis of retinoblastoma (RB). This present study was aimed to investigate the significance of miR-375 in RB progression, and the underlying mechanism. MATERIALS AND METHODS: The miR-375 expression was detected by RT-PCR. CCK-8 assay and transwell assays were used to measure RB cell viability, migration, and invasion. The downstream gene of miR-375 was verified by luciferase reporter assay. Western blot was applied to detect the related proteins of MAPK1/MAPK3 signalling pathway. RESULTS: MiR-375 was decreased significantly in RB tissues, and its down-regulation was associated with the poor prognosis of RB patients. Over-expression of miR-375 inhibited RB cell proliferation, migration, and invasion. More importantly, miR-375 modulated ERBB2 expression negatively, and ERBB2 was confirmed as the target of miR-375. Moreover, ERBB2 overturned the inhibitory effect of miR-375 mimic on the progression of RB. MiR-375 mimic suppressed RB progression via inhibiting the activation of MAPK1/MAPK3 signalling pathway. CONCLUSIONS: MiR-375 inhibited RB progression through targeting ERBB2 and suppressing MAPK1/MAPK3 signalling pathway, which might be a new target for the clinical treatment strategy.


Assuntos
MicroRNAs , Neoplasias da Retina , Retinoblastoma , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia
4.
PLoS Comput Biol ; 16(6): e1007933, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559231

RESUMO

A high quality benchmark for small variants encompassing 88 to 90% of the reference genome has been developed for seven Genome in a Bottle (GIAB) reference samples. However a reliable benchmark for large indels and structural variants (SVs) is more challenging. In this study, we manually curated 1235 SVs, which can ultimately be used to evaluate SV callers or train machine learning models. We developed a crowdsourcing app-SVCurator-to help GIAB curators manually review large indels and SVs within the human genome, and report their genotype and size accuracy. SVCurator displays images from short, long, and linked read sequencing data from the GIAB Ashkenazi Jewish Trio son [NIST RM 8391/HG002]. We asked curators to assign labels describing SV type (deletion or insertion), size accuracy, and genotype for 1235 putative insertions and deletions sampled from different size bins between 20 and 892,149 bp. 'Expert' curators were 93% concordant with each other, and 37 of the 61 curators had at least 78% concordance with a set of 'expert' curators. The curators were least concordant for complex SVs and SVs that had inaccurate breakpoints or size predictions. After filtering events with low concordance among curators, we produced high confidence labels for 935 events. The SVCurator crowdsourced labels were 94.5% concordant with the heuristic-based draft benchmark SV callset from GIAB. We found that curators can successfully evaluate putative SVs when given evidence from multiple sequencing technologies.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Heurística , Humanos , Mutação INDEL
5.
BMC Bioinformatics ; 20(Suppl 2): 101, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871461

RESUMO

BACKGROUND: Reference genome selection is a prerequisite for successful analysis of next generation sequencing (NGS) data. Current practice employs one of the two most recent human reference genome versions: HG19 or HG38. To date, the impact of genome version on SNV identification has not been rigorously assessed. METHODS: We conducted analysis comparing the SNVs identified based on HG19 vs HG38, leveraging whole genome sequencing (WGS) data from the genome-in-a-bottle (GIAB) project. First, SNVs were called using 26 different bioinformatics pipelines with either HG19 or HG38. Next, two tools were used to convert the called SNVs between HG19 and HG38. Lastly we calculated conversion rates, analyzed discordant rates between SNVs called with HG19 or HG38, and characterized the discordant SNVs. RESULTS: The conversion rates from HG38 to HG19 (average 95%) were lower than the conversion rates from HG19 to HG38 (average 99%). The conversion rates varied slightly among the various calling pipelines. Around 1.5% SNVs were discordantly converted between HG19 or HG38. The conversions from HG38 to HG19 had more SNVs which failed conversion and more discordant SNVs than the opposite conversion (HG19 to HG38). Most of the discordant SNVs had low read depth, were low confidence SNVs as defined by GIAB, and/or were predominated by G/C alleles (52% observed versus 42% expected). CONCLUSION: A significant number of SNVs could not be converted between HG19 and HG38. Based on careful review of our comparisons, we recommend HG38 (the newer version) for NGS SNV analysis. To summarize, our findings suggest caution when translating identified SNVs between different versions of the human reference genome.


Assuntos
Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
7.
Nat Methods ; 9(5): 459-62, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22543379

RESUMO

The 1000 Genomes Project was launched as one of the largest distributed data collection and analysis projects ever undertaken in biology. In addition to the primary scientific goals of creating both a deep catalog of human genetic variation and extensive methods to accurately discover and characterize variation using new sequencing technologies, the project makes all of its data publicly available. Members of the project data coordination center have developed and deployed several tools to enable widespread data access.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Genômica/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Variação Genética , Humanos
8.
Viruses ; 16(3)2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543795

RESUMO

Genomic sequencing of clinical samples to identify emerging variants of SARS-CoV-2 has been a key public health tool for curbing the spread of the virus. As a result, an unprecedented number of SARS-CoV-2 genomes were sequenced during the COVID-19 pandemic, which allowed for rapid identification of genetic variants, enabling the timely design and testing of therapies and deployment of new vaccine formulations to combat the new variants. However, despite the technological advances of deep sequencing, the analysis of the raw sequence data generated globally is neither standardized nor consistent, leading to vastly disparate sequences that may impact identification of variants. Here, we show that for both Illumina and Oxford Nanopore sequencing platforms, downstream bioinformatic protocols used by industry, government, and academic groups resulted in different virus sequences from same sample. These bioinformatic workflows produced consensus genomes with differences in single nucleotide polymorphisms, inclusion and exclusion of insertions, and/or deletions, despite using the same raw sequence as input datasets. Here, we compared and characterized such discrepancies and propose a specific suite of parameters and protocols that should be adopted across the field. Consistent results from bioinformatic workflows are fundamental to SARS-CoV-2 and future pathogen surveillance efforts, including pandemic preparation, to allow for a data-driven and timely public health response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Fluxo de Trabalho , Biologia Computacional
9.
Genome Biol ; 25(1): 163, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902799

RESUMO

BACKGROUND: Copy number variation (CNV) is a key genetic characteristic for cancer diagnostics and can be used as a biomarker for the selection of therapeutic treatments. Using data sets established in our previous study, we benchmark the performance of cancer CNV calling by six most recent and commonly used software tools on their detection accuracy, sensitivity, and reproducibility. In comparison to other orthogonal methods, such as microarray and Bionano, we also explore the consistency of CNV calling across different technologies on a challenging genome. RESULTS: While consistent results are observed for copy gain, loss, and loss of heterozygosity (LOH) calls across sequencing centers, CNV callers, and different technologies, variation of CNV calls are mostly affected by the determination of genome ploidy. Using consensus results from six CNV callers and confirmation from three orthogonal methods, we establish a high confident CNV call set for the reference cancer cell line (HCC1395). CONCLUSIONS: NGS technologies and current bioinformatics tools can offer reliable results for detection of copy gain, loss, and LOH. However, when working with a hyper-diploid genome, some software tools can call excessive copy gain or loss due to inaccurate assessment of genome ploidy. With performance matrices on various experimental conditions, this study raises awareness within the cancer research community for the selection of sequencing platforms, sample preparation, sequencing coverage, and the choice of CNV detection tools.


Assuntos
Biologia Computacional , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Perda de Heterozigosidade , Neoplasias , Software , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Biologia Computacional/métodos , Diploide , Genoma Humano , Linhagem Celular Tumoral , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
10.
ACS Macro Lett ; 12(11): 1498-1502, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37874266

RESUMO

An efficient synthesis of cyclic polymers (CPs) is in high demand due to their unique properties. However, polymer cyclization generally occurs at low concentrations (0.1 g/L), and the synthesis of CPs at high concentrations remains a challenge. Herein an efficient cyclization of poly(ethylene glycol) (Mn = 2000 g/mol, 4000 g/mol) (PEG-2k, PEG-4k) in high concentration (80 g/L) is realized by the assistance of pseudopolyrotaxane (pPRx). Water-soluble pPRx with a U-like-shape inclusion motif is prepared by mixing the 2-hydroxypropyl-γ-cyclodextrin (HPγCD) and PEG with (E)-3,4,5-trimethoxycinnamate (TCA-PEG-2k, TCA-PEG-4k). Subsequent irradiation of the pPRx solution (10-80 g/L) by UV light gives cyclic polymers through the intramolecular [2 + 2] photocycloaddition of the cinnamoyl moieties. The photoreaction of TCA-PEG-2k in the pPRx system gives cyclic monomers (C-1mer) as major products with a yield of 66% at 80 g/L. Additionally, the cyclization of TCA-PEG-4k also gives C-1mer as major products with a yield of 45% at a concentration of 80 g/L.

11.
Z Orthop Unfall ; 160(6): 670-678, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35468646

RESUMO

OBJECTIVE: We aimed to compare the early clinical efficacy of endoscopy-assisted transforaminal lumbar interbody fusion (Endo-TLIF) and traditional Open-TLIF in the treatment of lumbar disc herniation and lumbar instability. METHODS: Forty-six patients with lumbar disc herniation and lumbar instability admitted to the hospital were retrospectively studied from October 11, 2018 to October 11, 2020. Patients (including 17 males and 29 females) were randomly divided into Endo-TLIF and Open-TLIF groups according to the different surgical treatment. Parameters such as intraoperative blood loss, operation time, and intraoperative fluoroscopy time during the surgery as well as preoperative and postoperative lumbar lordosis angle and lumbar clearance height and related complications were recorded in detail. RESULTS: Endo-TLIF significantly reduced intraoperative blood loss and bleeding volume compared with traditional Open-TLIF. The incision length in the Endo-TLIF group was shorter than in the Open-TLIF group and the intraoperative fluoroscopy time was also shorter than in the Open-TLIF group. The bed rest time and hospital discharge time were shortened in Endo-TLIF surgery compared with traditional Open-TLIF surgery. The creatine kinase (CK) values of the Endo-TLIF group were lower than that of the Open-TLIF group on the 1st and 3rd day after operation. Although computed tomography images of the lumbar lordosis angle did not show a significant difference between the Endo-TLIF group (43.97 ± 8.91°) and Open-TLIF group (49.08 ± 9.42°), the visual analogue scale score and Oswestry dysfunction index of lower back pain in the Endo-TLIF group were significantly lower than in the Open-TLIF group at 1 month and half a year after surgery. Complications in the Endo-TLIF group, such as lower limb neurological dysfunction and diseases of the respiratory or urinary system, effectively improved compared with the Open-TLIF group. CONCLUSION: Endo-TLIF appears to be a safer and more effective option for the treatment of lumbar disc herniation and lumbar instability, with a shorter recovery time, less trauma, less bleeding, no need for postoperative drainage, and less iatrogenic injury.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Instabilidade Articular , Lordose , Fusão Vertebral , Masculino , Feminino , Humanos , Fusão Vertebral/métodos , Deslocamento do Disco Intervertebral/diagnóstico por imagem , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Perda Sanguínea Cirúrgica/prevenção & controle , Estudos Retrospectivos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Resultado do Tratamento , Endoscopia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia
12.
Biomed Pharmacother ; 156: 113881, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272264

RESUMO

Spinal cord injury (SCI) is a severely disabling central nervous system injury with complex pathological mechanisms that leads to sensory and motor dysfunction. The current treatment for SCI is aimed at symptomatic symptom relief rather than the pathological causes. Several studies have reported that signaling pathways play a key role in SCI pathological processes and neuronal recovery mechanisms. The PI3K/Akt signaling pathway is an important pathway closely related to the pathological process of SCI, and activation of this pathway can delay the inflammatory response, prevent glial scar formation, and promote neurological function recovery. Activation of this pathway can promote the recovery of neurological function after SCI by reducing cell apoptosis. Based on the role of the PI3K/Akt pathway in SCI, it may be a potential therapeutic target. This review highlights the role of activating or inhibiting the PI3K/Akt signaling pathway in SCI-induced inflammatory response, apoptosis, autophagy, and glial scar formation. We also summarize the latest evidence on treating SCI by targeting the PI3K/Akt pathway, discuss the shortcomings and deficiencies of PI3K/Akt research in the field of SCI, and identify potential challenges in developing these clinical therapeutic SCI strategies, and provide appropriate solutions.


Assuntos
Fosfatidilinositol 3-Quinases , Traumatismos da Medula Espinal , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Gliose/patologia , Transdução de Sinais , Apoptose , Medula Espinal/metabolismo
13.
Genome Biol ; 23(1): 12, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996510

RESUMO

BACKGROUND: Accurate detection of somatic mutations is challenging but critical in understanding cancer formation, progression, and treatment. We recently proposed NeuSomatic, the first deep convolutional neural network-based somatic mutation detection approach, and demonstrated performance advantages on in silico data. RESULTS: In this study, we use the first comprehensive and well-characterized somatic reference data sets from the SEQC2 consortium to investigate best practices for using a deep learning framework in cancer mutation detection. Using the high-confidence somatic mutations established for a cancer cell line by the consortium, we identify the best strategy for building robust models on multiple data sets derived from samples representing real scenarios, for example, a model trained on a combination of real and spike-in mutations had the highest average performance. CONCLUSIONS: The strategy identified in our study achieved high robustness across multiple sequencing technologies for fresh and FFPE DNA input, varying tumor/normal purities, and different coverages, with significant superiority over conventional detection approaches in general, as well as in challenging situations such as low coverage, low variant allele frequency, DNA damage, and difficult genomic regions.


Assuntos
Aprendizado Profundo , Neoplasias , Genômica , Humanos , Mutação , Neoplasias/genética , Redes Neurais de Computação
14.
Genome Biol ; 23(1): 237, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352452

RESUMO

BACKGROUND: The use of a personalized haplotype-specific genome assembly, rather than an unrelated, mosaic genome like GRCh38, as a reference for detecting the full spectrum of somatic events from cancers has long been advocated but has never been explored in tumor-normal paired samples. Here, we provide the first demonstrated use of de novo assembled personalized genome as a reference for cancer mutation detection and quantifying the effects of the reference genomes on the accuracy of somatic mutation detection. RESULTS: We generate de novo assemblies of the first tumor-normal paired genomes, both nuclear and mitochondrial, derived from the same individual with triple negative breast cancer. The personalized genome was chromosomal scale, haplotype phased, and annotated. We demonstrate that it provides individual specific haplotypes for complex regions and medically relevant genes. We illustrate that the personalized genome reference not only improves read alignments for both short-read and long-read sequencing data but also ameliorates the detection accuracy of somatic SNVs and SVs. We identify the equivalent somatic mutation calls between two genome references and uncover novel somatic mutations only when personalized genome assembly is used as a reference. CONCLUSIONS: Our findings demonstrate that use of a personalized genome with individual-specific haplotypes is essential for accurate detection of the full spectrum of somatic mutations in the paired tumor-normal samples. The unique resource and methodology established in this study will be beneficial to the development of precision oncology medicine not only for breast cancer, but also for other cancers.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Medicina de Precisão , Genoma , Software , Haplótipos , Mutação , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
15.
bioRxiv ; 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380755

RESUMO

During the COVID-19 pandemic, SARS-CoV-2 surveillance efforts integrated genome sequencing of clinical samples to identify emergent viral variants and to support rapid experimental examination of genome-informed vaccine and therapeutic designs. Given the broad range of methods applied to generate new viral genomes, it is critical that consensus and variant calling tools yield consistent results across disparate pipelines. Here we examine the impact of sequencing technologies (Illumina and Oxford Nanopore) and 7 different downstream bioinformatic protocols on SARS-CoV-2 variant calling as part of the NIH Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) Tracking Resistance and Coronavirus Evolution (TRACE) initiative, a public-private partnership established to address the COVID-19 outbreak. Our results indicate that bioinformatic workflows can yield consensus genomes with different single nucleotide polymorphisms, insertions, and/or deletions even when using the same raw sequence input datasets. We introduce the use of a specific suite of parameters and protocols that greatly improves the agreement among pipelines developed by diverse organizations. Such consistency among bioinformatic pipelines is fundamental to SARS-CoV-2 and future pathogen surveillance efforts. The application of analysis standards is necessary to more accurately document phylogenomic trends and support data-driven public health responses.

16.
Science ; 376(6588): eabl3533, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357935

RESUMO

Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious variants per sample, including reduction of false positives in 269 medically relevant genes by up to a factor of 12. Because of these improvements in variant discovery coupled with population and functional genomic resources, T2T-CHM13 is positioned to replace GRCh38 as the prevailing reference for human genetics.


Assuntos
Variação Genética , Genoma Humano , Genômica/normas , Análise de Sequência de DNA/normas , Humanos , Padrões de Referência
17.
Genome Biol ; 23(1): 255, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514120

RESUMO

BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, oncology diagnostics, and personalized medicine. As part of the SEQC2 Consortium effort, the present study established and evaluated a consensus SV call set using a breast cancer reference cell line and matched normal control derived from the same donor, which were used in our companion benchmarking studies as reference samples. RESULTS: We systematically investigated somatic SVs in the reference cancer cell line by comparing to a matched normal cell line using multiple NGS platforms including Illumina short-read, 10X Genomics linked reads, PacBio long reads, Oxford Nanopore long reads, and high-throughput chromosome conformation capture (Hi-C). We established a consensus SV call set of a total of 1788 SVs including 717 deletions, 230 duplications, 551 insertions, 133 inversions, 146 translocations, and 11 breakends for the reference cancer cell line. To independently evaluate and cross-validate the accuracy of our consensus SV call set, we used orthogonal methods including PCR-based validation, Affymetrix arrays, Bionano optical mapping, and identification of fusion genes detected from RNA-seq. We evaluated the strengths and weaknesses of each NGS technology for SV determination, and our findings provide an actionable guide to improve cancer genome SV detection sensitivity and accuracy. CONCLUSIONS: A high-confidence consensus SV call set was established for the reference cancer cell line. A large subset of the variants identified was validated by multiple orthogonal methods.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Análise de Sequência de DNA/métodos , Variação Estrutural do Genoma , Tecnologia , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Genoma Humano , Neoplasias/genética
18.
Nat Biotechnol ; 40(5): 672-680, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132260

RESUMO

The repetitive nature and complexity of some medically relevant genes poses a challenge for their accurate analysis in a clinical setting. The Genome in a Bottle Consortium has provided variant benchmark sets, but these exclude nearly 400 medically relevant genes due to their repetitiveness or polymorphic complexity. Here, we characterize 273 of these 395 challenging autosomal genes using a haplotype-resolved whole-genome assembly. This curated benchmark reports over 17,000 single-nucleotide variations, 3,600 insertions and deletions and 200 structural variations each for human genome reference GRCh37 and GRCh38 across HG002. We show that false duplications in either GRCh37 or GRCh38 result in reference-specific, missed variants for short- and long-read technologies in medically relevant genes, including CBS, CRYAA and KCNE1. When masking these false duplications, variant recall can improve from 8% to 100%. Forming benchmarks from a haplotype-resolved whole-genome assembly may become a prototype for future benchmarks covering the whole genome.


Assuntos
Genoma Humano , Genoma Humano/genética , Haplótipos/genética , Humanos , Análise de Sequência de DNA
19.
Genome Biol ; 23(1): 2, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980216

RESUMO

BACKGROUND: Reproducible detection of inherited variants with whole genome sequencing (WGS) is vital for the implementation of precision medicine and is a complicated process in which each step affects variant call quality. Systematically assessing reproducibility of inherited variants with WGS and impact of each step in the process is needed for understanding and improving quality of inherited variants from WGS. RESULTS: To dissect the impact of factors involved in detection of inherited variants with WGS, we sequence triplicates of eight DNA samples representing two populations on three short-read sequencing platforms using three library kits in six labs and call variants with 56 combinations of aligners and callers. We find that bioinformatics pipelines (callers and aligners) have a larger impact on variant reproducibility than WGS platform or library preparation. Single-nucleotide variants (SNVs), particularly outside difficult-to-map regions, are more reproducible than small insertions and deletions (indels), which are least reproducible when > 5 bp. Increasing sequencing coverage improves indel reproducibility but has limited impact on SNVs above 30×. CONCLUSIONS: Our findings highlight sources of variability in variant detection and the need for improvement of bioinformatics pipelines in the era of precision medicine with WGS.


Assuntos
Genoma Humano , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
20.
Cell Genom ; 2(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36452119

RESUMO

Genome in a Bottle benchmarks are widely used to help validate clinical sequencing pipelines and develop variant calling and sequencing methods. Here we use accurate linked and long reads to expand benchmarks in 7 samples to include difficult-to-map regions and segmental duplications that are challenging for short reads. These benchmarks add more than 300,000 SNVs and 50,000 insertions or deletions (indels) and include 16% more exonic variants, many in challenging, clinically relevant genes not covered previously, such as PMS2. For HG002, we include 92% of the autosomal GRCh38 assembly while excluding regions problematic for benchmarking small variants, such as copy number variants, that should not have been in the previous version, which included 85% of GRCh38. It identifies eight times more false negatives in a short read variant call set relative to our previous benchmark. We demonstrate that this benchmark reliably identifies false positives and false negatives across technologies, enabling ongoing methods development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA