Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Gen Comp Endocrinol ; 336: 114244, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841441

RESUMO

Kisspeptin, a kind of neuropeptide, is involved in various physiological processes such as tumor metastasis inhibition and reproductive regulation due to its ability to interact with Kisspeptin receptor-Kissr. In teleost, Kisspeptin/Kissr system stimulates the hypothalamus-pituitary-gonadal axis (HPG axis), which is crucial for the reproductive regulation. Compared to one Kisspeptin protein Kiss1 was existed in mammals, two Kisspeptin were identified in sturgeon species, including Kiss1 and Kiss2, with specific receptors of Kissr1 and Kissr2, respectively. However, few reports described the effects of the two isoforms of Kisspeptin on the reproductive regulation in sturgeon. The core peptides of Kiss1 and Kiss2 (Kiss1-10 and Kiss2-10) of Dabry's sturgeon were successfully synthesized to explore the functional influence of Kisspeptin on the sturgeon HPG axis in the present study. The present findings suggested that intraperitoneal injection of Kiss1-10 and Kiss2-10 could significantly up-regulate the mRNA expression of Gnrh、Fsh and Lh in the hypothalamus and pituitary and the content of Lh protein in the serum. Assays of Kisspeptin-treated cells demonstrated that Kiss1-10 and Kiss2-10 can significantly promote the expression of Gnrh in hypothalamus cells and Lh and Fsh in pituitary cells of Dabry's sturgeon, indicating their direct-acting effect on pituitary cells and regulatory function on the reproductive development of sturgeon. This study described the reproductive function of the Kisspeptin in the Dabry's sturgeon for the first time, and provided supportive reference for the development of high-efficiency ripening technologies of artificially breeding sturgeon.


Assuntos
Peixes , Kisspeptinas , Animais , Kisspeptinas/metabolismo , Peixes/metabolismo , Reprodução , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Foliculoestimulante/metabolismo , Mamíferos/metabolismo
2.
Gen Comp Endocrinol ; 330: 114135, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181879

RESUMO

The hypothalamus and pituitary serve as important neuroendocrine center, which is able to secrete a variety of neuropeptides and hormones to participate in the regulation of reproduction, growth, stress and feeding in fish. Chinese sturgeon is a basal vertebrate lineage fish with a special evolutionary status, but the information on its neuroendocrine system is relatively scarce. Using the transcriptome data on the hypothalamus-pituitary axis of Chinese sturgeon as reference, we found out 46 hypothalamus neuropeptide genes, which were involved in regulation of reproduction, growth, stress and feeding. The results of sequence alignment showed that the neuroendocrine system of Chinese sturgeon evolves slowly, which confirms that Chinese sturgeon is a species with a slow phenotypic evolution rate. In addition, we also isolated six pituitary hormones genes from Chinese sturgeon, including reproductive hormones: follicle-stimulating homone (FSH) and luteinizing hormone (LH), growth-related hormones: growth hormone (GH)/prolactin (PRL)/somatolactin (SL), and stress-related hormone gene: proopiomelanocortin (POMC). Similar to teleost, immunostaining localization analysis in Chinese sturgeon pituitary showed that LH and FSH were located in the pituitary proximal pars distalis, SL was located in the pituitary rostral pars distalis, and POMC was located in the pituitary pars intermedia and pituitary rostral pars distalis. This study will give a contribution to enrich our information on the neuroendocrine system in Chinese sturgeon.


Assuntos
Neuropeptídeos , Pró-Opiomelanocortina , Animais , Hormônios Hipofisários , Hipófise , Peixes , Hormônio do Crescimento , Prolactina , Neuropeptídeos/genética , Hormônio Luteinizante , Hipotálamo , Hormônio Foliculoestimulante , China
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446099

RESUMO

Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.


Assuntos
Lipopolissacarídeos , Proteínas Musculares , Suínos , Animais , Lipopolissacarídeos/farmacologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Caquexia/etiologia , Caquexia/metabolismo , Proteólise , Necroptose , Músculo Esquelético/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , DNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894853

RESUMO

Quercetin (Que) is a flavonol compound found in plants, which has a variety of biological activities. Necroptosis, a special form of programmed cell death, plays a vital role in the development of many gastrointestinal diseases. This study aimed to explore whether Que could attenuate the intestinal injury and barrier dysfunction of piglets after deoxynivalenol (DON) exposure through modulating the necroptosis signaling pathway. Firstly, twenty-four weaned piglets were used in a 2 × 2 factorial design and the main factors, including Que (basal diet or diet supplemented with 100 mg/kg Que) and DON exposure (control feed or feed contaminated with 4 mg/kg DON). After feeding for 21 d, piglets were killed for samples. Next, the intestinal porcine epithelial cell line (IPEC-1) was pretreated with or without Que (10 µmol/mL) in the presence or absence of a DON challenge (0.5 µg/mL). Dietary Que increased the body weight, average daily gain, and average daily feed intake (p < 0.05) through the trial. Que supplementation improved the villus height, and enhanced the intestinal barrier function (p < 0.05) indicated by the higher protein expression of occludin and claudin-1 (p < 0.05) in the jejunum of the weaned piglets after DON exposure. Dietary Que also down-regulated the protein abundance of total receptor interacting protein kinase 1 (t-RIP1), phosphorylated RIP1 (p-RIP1), p-RIP3, total mixed lineage kinase domain-like protein (t-MLKL), and p-MLKL (p < 0.05) in piglets after DON exposure. Moreover, Que pretreatment increased the cell viability and decreased the lactate dehydrogenase (LDH) activity (p < 0.05) in the supernatant of IPEC-1 cells after DON challenge. Que treatment also improved the epithelial barrier function indicated by a higher transepithelial electrical resistance (TEER) (p < 0.001), lower fluorescein isothiocyanate-labeled dextran (FD4) flux (p < 0.001), and better distribution of occludin and claudin-1 (p < 0.05) after DON challenge. Additionally, pretreatment with Que also inhibited the protein abundance of t-RIP1, p-RIP1, t-RIP3, p-RIP3, t-MLKL, and p-MLKL (p < 0.05) in IPEC-1 cells after DON challenge. In general, our data suggest that Que can ameliorate DON-induced intestinal injury and barrier dysfunction associated with suppressing the necroptosis signaling pathway.


Assuntos
Necroptose , Quercetina , Suínos , Animais , Quercetina/farmacologia , Ocludina , Claudina-1 , Transdução de Sinais
5.
J Nutr ; 152(7): 1611-1620, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35380692

RESUMO

Obesity develops from an imbalance of energy homeostasis and is associated with the development of metabolic disorders, including insulin resistance and type 2 diabetes. Identification of the underlying molecular mechanisms and effective therapeutic approaches is highly needed. Lysine-specific demethylase 1 (LSD1), an flavin adenine dinucletide-dependent amine oxidase, is implicated in a wide variety of biological processes, including tumorigenesis, stem cell fate decisions, and embryonic development. Recent studies have suggested a vital role of LSD1 in regulating adaptive thermogenesis, mitochondrial biogenesis, glucose, and lipid metabolism. More recently, LSD1 activity was found to be regulated by nutrients, energy status, and hormonal signals, suggesting that it may act as a novel sensor for nutritional regulation of metabolic health. Here, we first discuss the effects of LSD1 on physiological phenotypes, including body weight, fat mass, body temperature, and glucose homeostasis. We also summarize recent understanding of the physiological roles and underlying mechanisms of LSD1 in controlling metabolic functions of adipose and other tissues. Hopefully, a better understanding of the roles of LSD1 in metabolic regulation may provide new perspectives for the nutritional prevention and treatment of obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Histona Desmetilases , Lisina , Obesidade , Metabolismo Energético , Glucose , Histona Desmetilases/metabolismo , Humanos , Lisina/metabolismo
6.
Br J Nutr ; 128(5): 835-850, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34915950

RESUMO

This study was aimed to investigate whether EPA and arachidonic acid (ARA), the representative n-3 or n-6 PUFA, could alleviate enterotoxigenic Escherichia coli (ETEC) K88-induced inflammation and injury of intestinal porcine epithelial cells 1 (IPEC-1) by modulating pyroptosis and necroptosis signalling pathways. IPEC-1 cells were cultured with or without EPA or ARA in the presence or absence of ETEC K88. EPA and ARA reduced ETEC K88 adhesion and endotoxin content in the supernatant. EPA and ARA increased transepithelial electrical resistance, decreased permeability of fluorescein isothiocyanate-labelled dextran, increased membrane protein expression of occludin, ZO-1 and claudin-1 and relieved disturbed distribution of these proteins. EPA and ARA also reduced cell necrosis ratio. EPA or ARA reduced mRNA and concentration of TNF-α, IL-6 and IL-8 and decreased mRNA abundances of intestinal toll-like receptors 4 and its downstream signals. Moreover, EPA and ARA downregulated mRNA expression of nod-like receptor protein 3 (NLRP3), caspase 1 and IL-18 and inhibited protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), gasdermin D and caspase-1. Finally, EPA and ARA reduced mRNA expression of fas-associated death domain protein, caspase 8, receptor-interacting protein kinase (RIP) 1, mixed lineage kinase-like protein (MLKL), phosphoglycerate mutase 5 (PGAM5), motility-related protein 1 (Drp1) and high mobility protein 1 (HMGB1) and inhibited protein expression of phosphorylated-RIP1, p-RIP3, p-MLKL and HMGB1. These data demonstrate that EPA and ARA prevent ETEC K88-induced cell inflammation and injury, which is partly through inhibiting pyroptosis and necroptosis signalling pathways.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteína HMGB1 , Enteropatias , Animais , Suínos , Escherichia coli Enterotoxigênica/metabolismo , Proteína HMGB1/metabolismo , Piroptose , Necroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Escherichia coli/prevenção & controle , Enteropatias/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Mucosa Intestinal/metabolismo
7.
Br J Nutr ; 128(2): 161-171, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34519265

RESUMO

This study assessed the molecular mechanism of EPA or DHA protection against intestinal porcine epithelial cell line 1 (IPEC-1) cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA + DON group and the DHA + DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+ and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.


Assuntos
Intestinos , Tricotecenos , Animais , Suínos , Espécies Reativas de Oxigênio/metabolismo , Tricotecenos/metabolismo , Tricotecenos/farmacologia , Células Epiteliais/metabolismo , Estresse do Retículo Endoplasmático
8.
Nutr Res Rev ; 35(1): 150-158, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34100341

RESUMO

Intestinal stem cells, which are capable of both self-renewal and differentiation to mature cell types, are responsible for maintaining intestinal epithelial homeostasis. Recent evidence indicates that these processes are mediated, in part, through nutritional status in response to diet. Diverse dietary patterns including caloric restriction, fasting, high-fat diets, ketogenic diets and high-carbohydrate diets as well as other nutrients control intestinal stem cell self-renewal and differentiation through nutrient-sensing pathways such as mammalian target of rapamycin and AMP-activated kinase. Herein, we summarise the current understanding of how intestinal stem cells contribute to intestinal epithelial homeostasis and diseases. We also discuss the effects of diet and nutrient-sensing pathways on intestinal stem cell self-renewal and differentiation, as well as their potential application in the prevention and treatment of intestinal diseases.


Assuntos
Enteropatias , Células-Tronco , Dieta Hiperlipídica , Homeostase , Humanos , Enteropatias/terapia , Nutrientes , Células-Tronco/metabolismo
9.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232518

RESUMO

Stressors cause activation of the hypothalamic-pituitary-adrenal (HPA) axis and a systemic inflammatory response. As a newly proposed cell death manner in recent years, necroptosis occurs in a variety of tissue damage and inflammation. However, the role of necroptosis in HPA axis activation remains to be elucidated. The aim of this study was to investigate the occurrence of necroptosis and its role in HPA activation in a porcine stress model induced by Escherichia coli lipopolysaccharide (LPS). Several typical stress behaviors like fever, anorexia, shivering and vomiting were observed in piglets after LPS injection. HPA axis was activated as shown by increased plasma cortisol concentration and mRNA expression of pituitary corticotropin-releasing hormone receptor 1 (CRHR1) and adrenal steroidogenic acute regulatory protein (StAR). The mRNA expression of tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß) and IL-6 in the hypothalamus, pituitary gland and adrenal gland was elevated by LPS, accompanied by the activation of necroptosis indicated by higher mRNA expression of necroptosis signals including receptor-interacting protein kinase (RIP) 1, RIP3, and phosphorylated mixed-lineage kinase domain-like protein (MLKL). Furthermore, necrostatin-1 (Nec-1), an inhibitor of necroptosis, inhibited necroptosis indicated by decreased mRNA levels of RIP1, RIP3, MLKL, and phosphoglycerate mutase family member 5 (PGAM5) in the hypothalamus, pituitary gland and adrenal gland. Nec-1 also decreased the mRNA expression of TNF-α and IL-ß and inhibited the activation of the HPA axis indicated by lower plasma cortisol concentration and mRNA expression of adrenal type 2 melanocortin receptor (MC2R) and StAR. These findings suggest that necroptosis is present and contributes to HPA axis activation induced by LPS. These findings provide a potential possibility for necroptosis as an intervention target for alleviating HPA axis activation and stress responses.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Necroptose , Fosfoglicerato Mutase/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Suínos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
FASEB J ; 34(2): 2483-2496, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31909535

RESUMO

Deoxynivalenol (DON) is one of the most common mycotoxins that contaminates food or feed and cause intestinal damage. Long-chain n-3 polyunsaturated fatty acids (PUFA) such as EPA and DHA exert beneficial effects on intestinal integrity in animal models and clinical trials. Necroptosis signaling pathway plays a critical role in intestinal cell injury. This study tested the hypothesis that EPA and DHA could alleviate DON-induced injury to intestinal porcine epithelial cells through modulation of the necroptosis signaling pathway. Intestinal porcine epithelial cell 1 (IPEC-1) cells were cultured with or without EPA or DHA (6.25-25 µg/mL) in the presence or absence of 0.5 µg/mL DON for indicated time points. Cell viability, cell number, lactate dehydrogenase (LDH) activity, cell necrosis, transepithelial electrical resistance (TEER), fluorescein isothiocyanate-labeled dextran 4kDa (FD4) flux, tight junction protein distribution, and protein abundance of necroptosis related signals were determined. EPA and DHA promoted cell growth indicated by higher cell viability and cell number, and inhibited cell injury indicated by lower LDH activity in the media. EPA and DHA also improved intestinal barrier function, indicated by higher TEER and lower permeability of FD4 flux as well as increased proportions of tight junction proteins located in the plasma membrane. Moreover, EPA and DHA decreased cell necrosis demonstrated by live cell imaging and transmission electron microscopy. Finally, EPA and DHA downregulated protein expressions of necroptosis related signals including tumor necrosis factor receptor (TNFR1), receptor interacting protein kinase 1 (RIP1), RIP3, phosphorylated mixed lineage kinase-like protein (MLKL), phosphoglycerate mutase family 5 (PGAM5), dynamin-related protein 1 (Drp1), and high mobility group box-1 protein (HMGB1). EPA and DHA also inhibited protein expression of caspase-3 and caspase-8. These results suggest that EPA and DHA prevent DON-induced intestinal cell injury and enhance barrier function, which is associated with inhibition of the necroptosis signaling pathway.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Células Epiteliais , Mucosa Intestinal , Necroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Suínos
11.
J Fish Biol ; 96(1): 175-184, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31713865

RESUMO

The sox family is assumed to be responsible for a number of developmental systems. Genome sequencing technology makes it possible to scan sox genes and conduct characteristic analyses of different species. In fish, full characterisation of sox genes at the genome-wide level has been reported for pufferfish Takifugu rubripes, medaka Oryzias latipes, tilapia Oreochromis niloticus and channel catfish Ictalurus punctatus. However, no systematic investigation of the sox family in sturgeons (Acipenseridae) has been reported to date. This study conducted genome-wide identification of the sox genes in the Chinese sturgeon Acipenser sinensis and profiled their tissue distribution between male and female individuals. In total, 19 sox genes were identified, including soxb1, b2, c, d, e, f and h, in the Chinese sturgeon. Genomic structure analysis indicated relatively conserved exon-intron structures in each sox group and phylogenetic analysis supported the previous classification of the sox family. Most of the sox genes showed a tissue-specific expression pattern, indicating the possible involvement of Chinese sturgeon sox genes at different developmental processes such as cardiac and gonadal development. This study provides a comprehensive resource of Chinese sturgeon sox genes and enables a better understanding of the evolution and function of the sox family.


Assuntos
Peixes/genética , Fatores de Transcrição SOX/genética , Animais , Feminino , Genoma , Gônadas , Coração , Masculino , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
13.
Br J Nutr ; 115(6): 984-93, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26810899

RESUMO

Whey protein concentrate (WPC) has been reported to have protective effects on the intestinal barrier. However, the molecular mechanisms involved are not fully elucidated. Transforming growth factor-ß1 (TGF-ß1) is an important component in the WPC, but whether TGF-ß1 plays a role in these processes is not clear. The aim of this study was to investigate the protective effects of WPC on the intestinal epithelial barrier as well as whether TGF-ß1 is involved in these protection processes in a piglet model after lipopolysaccharide (LPS) challenge. In total, eighteen weanling pigs were randomly allocated to one of the following three treatment groups: (1) non-challenged control and control diet; (2) LPS-challenged control and control diet; (3) LPS+5 %WPC diet. After 19 d of feeding with control or 5 %WPC diets, pigs were injected with LPS or saline. At 4 h after injection, pigs were killed to harvest jejunal samples. The results showed that WPC improved (P<0·05) intestinal morphology, as indicated by greater villus height and villus height:crypt depth ratio, and intestinal barrier function, which was reflected by increased transepithelial electrical resistance and decreased mucosal-to-serosal paracellular flux of dextran (4 kDa), compared with the LPS group. Moreover, WPC prevented the LPS-induced decrease (P<0·05) in claudin-1, occludin and zonula occludens-1 expressions in the jejunal mucosae. WPC also attenuated intestinal inflammation, indicated by decreased (P<0·05) mRNA expressions of TNF-α, IL-6, IL-8 and IL-1ß. Supplementation with WPC also increased (P<0·05) TGF-ß1 protein, phosphorylated-Smad2 expression and Smad4 and Smad7 mRNA expressions and decreased (P<0·05) the ratios of the phosphorylated to total c-jun N-terminal kinase (JNK) and p38 (phospho-JNK:JNK and p-p38:p38), whereas it increased (P<0·05) the ratio of extracellular signal-regulated kinase (ERK) (phospho-ERK:ERK). Collectively, these results suggest that dietary inclusion of WPC attenuates the LPS-induced intestinal injury by improving mucosal barrier function, alleviating intestinal inflammation and influencing TGF-ß1 canonical Smad and mitogen-activated protein kinase signalling pathways.


Assuntos
Suplementos Nutricionais , Modelos Animais de Doenças , Enterocolite/prevenção & controle , Mucosa Intestinal/fisiopatologia , Intestinos/fisiopatologia , Proteínas de Junções Íntimas/metabolismo , Proteínas do Soro do Leite/uso terapêutico , Animais , Cruzamentos Genéticos , Citocinas/genética , Citocinas/metabolismo , Impedância Elétrica , Enterocolite/metabolismo , Enterocolite/patologia , Enterocolite/fisiopatologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/imunologia , Intestinos/patologia , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases , Masculino , Orquiectomia/veterinária , Permeabilidade , Distribuição Aleatória , Sus scrofa , Proteínas de Junções Íntimas/genética , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/uso terapêutico , Desmame , Proteínas do Soro do Leite/química
14.
Int Urogynecol J ; 26(5): 665-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25398392

RESUMO

BACKGROUND: The use of an indwelling catheter after uncomplicated hysterectomy is common, but remains controversial because of the occurrence of catheter-associated urinary tract infections (UTIs) and discomfort. OBJECTIVE: To examine the evidence on the benefits and harm from the use of an indwelling catheter after uncomplicated hysterectomy. DESIGN: Systematic review and meta-analysis of randomized controlled trials (RCTs). DATA SOURCES: Electronic databases including PubMed, Embase, the Cochrane Library, and Science Citation Index up to July 2014 were searched for relevant RCTs and the reference lists of the included studies were also searched manually. REVIEW METHODS: Included studies were RCTs comparing immediate and delayed catheter removal following uncomplicated hysterectomy without concomitant pelvic floor surgery. Two independent reviewers identified relevant RCTs, assessed their methodological quality and extracted data. Mantel-Haenszel estimates were calculated and pooled using a fixed or random effects model data are expressed as relative risks (RRs) and 95% confidence intervals (CIs). RESULTS: Ten RCTs with a total of 1,188 patients that met the inclusion criteria were analysed. Early catheter removal was associated with a reduced risk of positive urine culture (RR 0.60, 95% CI 0.40 to 0.88) and symptomatic UTI (RR 0.23, 95% CI 0.10 to 0.52). However, the incidence of recatheterization was lower among patients with delayed catheter removal (RR 3.32, 95% CI 1.48 to 7.46). There was no significant difference in febrile morbidity associated with UTI between the two approaches (RR 0.38, 95% CI 0.11 to 1.36). In addition, delayed catheter removal was associated with a longer time to first ambulation (standard mean difference -2.73, 95% CI -4.00 to -1.47]. CONCLUSIONS: The existing evidence from RCTs suggests that delayed catheter removal following uncomplicated hysterectomy increases the incidence of postoperative bacteriuria and symptomatic UTI but reduces the risk of recatheterization.


Assuntos
Cateteres de Demora , Remoção de Dispositivo , Cateteres Urinários , Cateterismo , Cateteres de Demora/efeitos adversos , Deambulação Precoce , Feminino , Humanos , Histerectomia , Cuidados Pós-Operatórios , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo , Cateteres Urinários/efeitos adversos , Infecções Urinárias/etiologia
15.
Phys Rev E ; 109(5-1): 054120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907484

RESUMO

The eigenstate thermalization hypothesis for translation invariant quantum spin systems has been proved recently by using random matrices. In this paper, we study the subsystem version of the eigenstate thermalization hypothesis for translation invariant quantum systems without referring to random matrices. We first find a relation between the quantum variance and the Belavkin-Staszewski relative entropy. Then, by showing the small upper bounds on the quantum variance and the Belavkin-Staszewski relative entropy, we prove the subsystem eigenstate thermalization hypothesis for translation invariant quantum systems with an algebraic speed of convergence in an elementary way. The proof holds for most of the translation invariant quantum lattice models with exponential or algebraic decays of correlations.

16.
Animals (Basel) ; 14(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254396

RESUMO

As an ancient and endangered species unique to the Yangtze River in China, the wild population of the Dabry's sturgeon has become scarce. Due to the long time till the first sexual maturity of Dabry's sturgeon, the population of artificially bred Dabry's sturgeon recovered slowly. As a member of the tachykinin family, TAC1 has been reported to have a variety of functions in mammals such as pain control, smooth muscle contraction and reproductive cycle regulation, but the function of Tac1 in fish has been rarely reported. In this study, we synthesized two tac1 gene products, Substance P (SP) and neurokinin A (NKA), and further verified the effect of two tac1 gene products on the secretion of related hormones in the pituitary of Dabry's Sturgeon by intraperitoneal injection and co-culture of primary cells. Expression studies revealed that the newly cloned tac1 were mainly distributed in the hypothalamus and pituitary tissue of the brain. In prepubertal Dabry's sturgeon, this study showed that the two gonadotropins' mRNA levels in pituitary tissue can be significantly increased by SP and NKA through intraperitoneal injection, and the LH protein level in serum was also increased. Further study showed that both NKA and SP could promote the two gonadotropins' mRNA expression in pituitary cells of Dabry's sturgeon. In addition, we explored the optimal dose and time of SP and NKA on pituitary cells is 24 h and over 10 nM. These results, as a whole, suggested that tac1 gene products play an important role in gonadotropin release and gonadal development in prepubertal Dabry's sturgeon.

17.
J Hazard Mater ; 474: 134601, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823098

RESUMO

Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.


Assuntos
Histona-Lisina N-Metiltransferase , Necroptose , Tricotecenos , Tricotecenos/toxicidade , Animais , Necroptose/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Suínos , Linhagem Celular , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia
18.
Sci Total Environ ; 920: 170894, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367736

RESUMO

Polypropylene microplastics (PP-MPs) are emerging environmental contaminants that have the potential to cause adverse effects on aquatic organisms. Reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) is a valuable tool for assessing the gene expression profiles under PP-MPs stress. To obtain an accurate gene expression profile of tissue inflammation and apoptosis that reflects the molecular mechanisms underlying the impact of PP-MPs on Chinese sturgeon, identifying reliable reference genes is crucial for RT-qPCR analysis. In this study, we constructed an experiment model of Chinese sturgeon exposed to PP-MPs, assessed the pathological injury, metabolic profile responses and oxidative stress in liver, evaluated the reliability of 8 reliable reference genes by 4 commonly used algorithms including GeNorm, NormFinder, BeatKeeper, Delta Ct, and then analyzed the performance of inflammatory response genes in liver, spleen and kidney with the best reference gene. HE staining revealed that the cytoplasm full small vacuoles and nucleus diameter increased were occurred in the liver cell of PP-MPs in treatment groups. Additionally, oxidative and biochemical parameters were significantly changes in the liver of treatment groups. For the reference genes in PP-MPs exposure experiments, this study screening the optimal reference genes including: EF1α and GAPDH for liver and spleen, and GAPDH and RPS18 for kidney. Besides, 2 inflammatory response genes (NLRP3, TNF-α) were chosen to assess the optimal reference genes using the least stable reference gene (TUB) as a control, verified the practicality of the select reference genes in different tissues. We also found that the low concentration of PP-MPs could induce the liver tissue damage and inflammatory response in Chinese sturgeon. Our study initially evaluated the impact of short-time exposure with PP-MPs in Chinese sturgeon and provided 3 sets of validated optimal reference genes in Chinese sturgeon exposure to PP-MPs.


Assuntos
Microplásticos , Plásticos , Animais , Polipropilenos/toxicidade , Reprodutibilidade dos Testes , Peixes , Reação em Cadeia da Polimerase em Tempo Real
19.
Artigo em Inglês | MEDLINE | ID: mdl-38862424

RESUMO

The order Acipenseriformes, which includes sturgeons and paddlefishes, represents "living fossils" with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.


Assuntos
Evolução Molecular , Peixes , Genoma , Poliploidia , Sequenciamento Completo do Genoma , Animais , Peixes/genética , Sequenciamento Completo do Genoma/métodos , Genoma/genética , Filogenia
20.
J Agric Food Chem ; 71(36): 13234-13243, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643317

RESUMO

Recent research has emphasized the significance of investigating the interplay between organelles, with endoplasmic reticulum mitochondria contact sites (ERMCSs) being recognized as critical signaling hubs between organelles. The objective of the current study was to assess the impact of deoxynivalenol (DON) on jejunal mitochondria, ER, and ERMCSs. Twelve piglets (35 d, 10.22 ± 0.35 kg) were randomized into two groups: control group, basal diet; the DON group, basal diet + 1.5 mg/kg DON. The findings revealed that DON decreased growth performance, induced jejunal oxidative stress, and impaired jejunal barrier function. DON was also found to induce mitochondrial dysfunction, trigger endoplasmic reticulum stress (ERS) in the piglets' jejunum, and activate mitochondrial and ER apoptosis pathways by upregulating apoptosis-related proteins (Caspase-8, Caspase-12, Bax, and CHOP). To investigate the involvement of ERMCSs in DON-induced intestinal injury, we measured the protein levels of ERMCS proteins, such as mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and glucose-regulated protein 75 (GRP75) and Pearson's correlation coefficient of ERMCS proteins and ERMCS ultrastructure. Our finding showed that DON upregulated the protein level of Mfn2 and GRP75 and increased the percentage of mitochondria with ERMCSs/total mitochondria, the length of ERMCSs compared to the perimeter of mitochondria, and the Pearson's correlation coefficient of voltage-dependent anion-selective channel protein 1 (VDAC1) and inositol 1,4,5-triphosphate receptors (IP3Rs) in piglets' jejunum. Furthermore, DON shortened the distance between mitochondria and ER at ERMCSs. These findings suggested that DON impaired mitochondrial function, triggered ERS, and increased ERMCSs, indicating that the increased ERMCSs could be related to mitochondrial dysfunction and ERS involved in the intestinal injury of piglets induced by DON.


Assuntos
Jejuno , Mitocôndrias , Animais , Suínos , Membranas Mitocondriais , Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA