Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Hepatol ; 80(5): 778-791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237865

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.


Assuntos
Peptídeos Penetradores de Células , Hepatopatia Gordurosa não Alcoólica , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Fígado/patologia , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras , Ubiquitina-Proteína Ligases/metabolismo
2.
FASEB J ; 36(9): e22489, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35959865

RESUMO

Protein arginine methyltransferase 1 (PRMT1) has been reported to be involved in various diseases. The expression of PRMT1 was increased in cirrhotic livers from human patients. However, the role of PRMT1 in hepatic fibrogenesis remains largely unexplored. In this study, we investigated the effect of PRMT1 on hepatic fibrogenesis and its underlying mechanism. We found that PRMT1 expression was significantly higher in fibrotic livers of the mice treated with thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Immunofluorescence staining revealed that PRMT1 expression was augmented in both hepatocytes and hepatic stellate cells (HSCs) in the fibrotic livers. Applying a selective inhibitor of PRMT1, PT1001B, significantly suppressed PRMT1 activity and mitigated liver fibrosis in mice. Hepatocyte-specific Prmt1 knockout did not affect liver fibrosis in mice. PRMT1 overexpression promoted the expression of fibrotic genes in the LX-2 cells, whereas knockdown of PRMT1 or treatment with PT1001B exhibited reversal effects, suggesting that PRMT1 plays an important role in HSC activation. Additionally, HSC-specific Prmt1 knockout attenuated HSC activation and liver fibrosis in TAA-induced fibrotic model. RNA-seq analysis revealed that Prmt1 knockout in HSCs significantly suppressed pro-inflammatory NF-κB and pro-fibrotic TGF-ß signals, and also downregulated the expression of pro-fibrotic mediators in mouse livers. Moreover, treatment with PT1001B consistently inhibited hepatic inflammatory response in fibrotic model. In conclusion, PRMT1 plays a vital role in HSC activation. Inhibition of PRMT1 mitigates hepatic fibrosis by attenuating HSC activation in mice. Therefore, targeting PRMT1 could be a feasible therapeutic strategy for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Proteína-Arginina N-Metiltransferases , Animais , Proliferação de Células , Fibrose , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/genética , Camundongos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
3.
Cell Death Dis ; 15(6): 416, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879600

RESUMO

Tripartite motif 8 (TRIM8) is an E3 ligase that plays dual roles in various tumor types. The biological effects and underlying mechanism of TRIM8 in hepatocellular carcinoma (HCC) remain unknown. Hepatocyte nuclear factor 1α (HNF1α) is a key transcriptional factor that plays a significant role in regulating hepatocyte differentiation and liver function. The reduced expression of HNF1α is a critical event in the development of HCC, but the underlying mechanism for its degradation remains elusive. In this study, we discovered that the expression of TRIM8 was upregulated in HCC tissues, and was positively correlated with aggressive tumor behavior of HCC and shorter survival of HCC patients. Overexpression of TRIM8 promoted the proliferation, colony formation, invasion, and migration of HCC cells, while TRIM8 knockdown or knockout exerted the opposite effects. RNA sequencing revealed that TRIM8 knockout suppresses several cancer-related pathways, including Wnt/ß-catenin and TGF-ß signaling in HepG2 cells. TRIM8 directly interacts with HNF1α, promoting its degradation by catalyzing polyubiquitination on lysine 197 in HCC cells. Moreover, the cancer-promoting effects of TRIM8 in HCC were abolished by the HNF1α-K197R mutant in vitro and in vivo. These data demonstrated that TRIM8 plays an oncogenic role in HCC progression through mediating the ubiquitination of HNF1α and promoting its protein degradation, and suggests targeting TRIM8-HNF1α may provide a promising therapeutic strategy of HCC.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Fator 1-alfa Nuclear de Hepatócito , Neoplasias Hepáticas , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653754

RESUMO

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Núcleo Celular , Fatores de Transcrição SOX9 , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transporte Ativo do Núcleo Celular/genética , Camundongos , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
5.
J Nutr Biochem ; 88: 108530, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33080347

RESUMO

Senile hypertension affects the life quality of aged population. Dietary intervention plays a pivotal role in the prevention of hypertension. There are few reports concerning the effects and mechanisms of green tea supplementation preventing age related hypertension. The current study investigated the effect and mechanism of dietary supplement of Huangshan Maofeng green tea (HSMF) on prevention of hypertension induced by deoxycorticosterone acetate (DOCA) and salt in old C57BL/6 mice. Our results showed that HSMF dose-dependently prevented the increase of systolic blood pressure and diastolic blood pressure induced by DOCA plus salt (DS) at 51-week-old mice. And HSMF significantly reduced the agonists' stimulated contraction of mesenteric arteries isolated from the old mice. The expression of vasoconstrictor genes and inflammatory cytokines in aorta were suppressed observably by HSMF supplementation compared with DS group. The protein expression of PKCα in the aorta was dose-dependently decreased by HSMF compared to DS group. The phosphorylation level of MYPT1, CPI-17and MLC20 was also restrained by HSMF in the aorta. Furthermore, HSMF protected kidney by maintaining integrity of glomeruli and tubules and remarkably decreased the NGAL level in plasma. HSMF also suppressed the kidney inflammation by decreasing inflammatory cytokines expression and the macrophage infiltration. Our results proved that dietary supplement of HSMF remarkably improved the vascular functions and protected kidney injury, and thus prevented hypertension induced by DS in older C57BL/6 mice. Our data indicated that the dietary supplement of HSMF may potentially be used as a food additive for preventing hypertension for aged people.


Assuntos
Hipertensão/prevenção & controle , Extratos Vegetais/farmacologia , Chá/química , Animais , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Acetato de Desoxicorticosterona/efeitos adversos , Suplementos Nutricionais , Humanos , Rim/metabolismo , Masculino , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Cloreto de Sódio na Dieta/efeitos adversos
6.
Eur J Pharmacol ; 906: 174217, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087223

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers and is associated with high morbidity and mortality rates. Recent research indicated that imatinib, a selective tyrosine kinase inhibitor, suppressed the growth of hepatocellular carcinoma. However, the effect of imatinib on HCC and its mechanism remain under investigated. In this study, we demonstrated that imatinib inhibited the proliferation, migration and invasion of HCC cells in vitro and exerted antitumour effects on HCC xenografts in mice in vivo. Imatinib treatment decreased the phosphorylation of AKT and increased the levels of both p62 (protein sequestosome 1) and LC3 (microtubule-associated protein 1A/1B-light chain 3) in HCC cells and HCC xenografts. Scanning confocal microscopy analysis with a mRFP-GFP-LC3 reporter and transmission electron microscopy analysis revealed that imatinib suppressed the autophagic flux by obstructing the formation of autolysosomes. Moreover, imatinib reversed the autophagy induced by sorafenib, and combined treatment with imatinib and sorafenib exerted a synergetic effect in HCC cells compared with monotherapy. Our collective data suggested that imatinib may target HCC by acting as an inhibitor of both tyrosine kinase and autophagy; here, we propose that imatinib could be a promising therapeutic agent for HCC in the clinic.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Mesilato de Imatinib/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib/uso terapêutico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Invasividade Neoplásica/prevenção & controle , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncotarget ; 9(9): 8772-8784, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29492237

RESUMO

Chronic liver injury (CLI) is a complex pathological process typically characterized by progressive destruction and regeneration of liver parenchymal cells due to diverse risk factors such as alcohol abuse, drug toxicity, viral infection, and genetic metabolic disorders. When the damage to hepatocytes is mild, the liver can regenerate itself and restore to the normal state; when the damage is irreparable, hepatocytes would undergo senescence or various forms of death including apoptosis, necrosis and necroptosis. These pathological changes not only promote the progression of the existing hepatopathies via various underlying mechanisms but are closely associated with hepatocarcinogenesis. In this review, we discuss the pathological changes that hepatocytes undergo during CLI, and their roles and mechanisms in the progression of hepatopathies and hepatocarcinogenesis. We also give a brief introduction about some animal models currently used for the research of CLI and progress in the research of CLI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA