Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Toxicol Appl Pharmacol ; 489: 117017, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925513

RESUMO

Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.


Assuntos
Alcaloides de Amaryllidaceae , Tetracloreto de Carbono , Células Estreladas do Fígado , Janus Quinase 2 , Cirrose Hepática , Fenantridinas , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Alcaloides de Amaryllidaceae/farmacologia , Tetracloreto de Carbono/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Masculino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Fenantridinas/farmacologia , Fenantridinas/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular
2.
J Cell Mol Med ; 25(2): 801-812, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259114

RESUMO

Colorectal cancer (CRC) accounts for about 10% of all annually diagnosed cancers and cancer-related deaths worldwide. STAT3 plays a vital role in the occurrence and development of tumours. Gracillin has shown a significant antitumour activity in tumours, but its mechanism remains unknown. The human CRC cell lines HCT116, RKO, and SW480 and immunodeficient mice were used as models to study the effects of gracillin on cell proliferation, migration and apoptosis. These were evaluated by cell viability, colony formation, wound-healing migration and cell apoptosis assays. Luciferase reporter assay, and immunostaining and western blot analyses were used to explore the specific mechanism through which gracillin exerts its effects. Gracillin significantly reduces viability and migration and stimulates apoptosis in human CRC cells. It also significantly inhibits tumour growth with no apparent physiological toxicity in animal model experiments. Moreover, gracillin is found to inhibit STAT3 phosphorylation and STAT3 target gene products. In addition, gracillin inhibits IL6-induced nuclear translocation of P-STAT3. Gracillin shows potent efficacy against CRC by inhibiting the STAT3 pathway. It should be further explored as a unique STAT3 inhibitor for the treatment of CRC.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Espirostanos/farmacologia , Espirostanos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioorg Med Chem ; 27(20): 115049, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31466835

RESUMO

Myeloid differentiation protein 2 (MD2) is a co-receptor of toll-like receptor 4 (TLR4) responsible for the recognition of lipopolysaccharide (LPS) and mediates a series of TLR4-dependent inflammatory responses in inflammatory lung diseases including acute lung injury (ALI). Targeting MD2 thus may provide a therapeutic strategy against these lung diseases. In this study, we identified a novel compound 4k with the potent anti-inflammatory activity among 39 methyl gallate derivatives (MGDs). MGD 4k exhibited a high binding affinity to MD2, which in turn prevented the formation of the LPS/MD2/TLR4 complex. In addition, MGD 4k significantly reversed the upregulation of LPS-induced inflammatory mediators such as tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1 in vitro and in vivo. Mechanistically, MGD 4k performed anti-inflammatory function by inactivating JNK, ERK and p38 signaling pathways. Taken together, our study identified MGD 4k as a novel potential therapeutic agent for ALI through inhibiting MD2, inflammatory responses, and major inflammation-associated signaling pathways.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Ácido Gálico/análogos & derivados , Antígeno 96 de Linfócito/antagonistas & inibidores , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Relação Dose-Resposta a Droga , Ácido Gálico/síntese química , Ácido Gálico/química , Ácido Gálico/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Nat Prod ; 82(4): 748-755, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30896163

RESUMO

The known chalcone (±)-sanjuanolide (1) can be isolated from Dalea frutescens. This study presents a convergent strategy for the first total synthesis of ( R)-, ( S)-, and (±)-sanjuanolide (1). The key step for synthesizing ( R)- and ( S)-1 was a Corey-Bakshi-Shibata enantioselective carbonyl reduction to construct the C-2″ configuration. ( R)-1 efficiently inhibited the lipopolysaccharides (LPS)-induced expression of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), while ( S)-1 produced no significant anti-inflammatory effect. ( R)-1 also effectively inhibited the mRNA expression of several inflammatory cytokines after the LPS challenge in vitro. The synthesis and biological properties of these compounds have confirmed ( R)-sanjuanolide and (±)-sanjuanolide as promising new leads for developing anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Fabaceae/química , Animais , Anti-Inflamatórios/química , Humanos , Interleucina-6/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Estrutura Molecular , Estereoisomerismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
5.
Mediators Inflamm ; 2018: 4934592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057486

RESUMO

Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Cumarínicos/farmacologia , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Transporte Ativo do Núcleo Celular , Lesão Pulmonar Aguda/induzido quimicamente , Adjuvantes Imunológicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Lesão Pulmonar/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1601-1610, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37688623

RESUMO

Inflammation is an important pathological process of many acute and chronic diseases, such as sepsis, arthritis, and cancer. Many factors can lead to an inflammatory state of the body, among which bacterial infection plays an important role. Bacterial infection often leads to sepsis, acute lung injury (ALI), or its more serious form of acute respiratory distress syndrome, which are the main fatal diseases in intensive care units. Costunolide has been reported to possess excellent anti-inflammatory activity; however, whether it can affect inflammation induced by gram-negative bacterial is still unclear. Lipopolysaccharide (LPS) stimulated mouse peritoneal macrophages (MPMs) to release proinflammatory cytokines was used as the cell model. The mouse model of sepsis and ALI was built through injecting intravenously and intratracheally of LPS. In the present study, costunolide inhibited LPS-induced inflammatory response through IKK/NF-κB signaling pathway in macrophages. In vivo, costunolide attenuated LPS-induced septic death in mice. Meanwhile, costunolide treatment alleviated LPS-induced lung injury and inflammation via inhibiting the infiltration of inflammatory cells and the expression of inflammatory cytokines. Taken together, these results demonstrated that costunolide could attenuate gram-negative bacterial induced inflammation and diseases and might be a potential candidate for the treatment of inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Infecções Bacterianas , Sepse , Sesquiterpenos , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Inflamação/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/patologia , Infecções Bacterianas/patologia , Pulmão/patologia
8.
Front Pharmacol ; 15: 1392849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855755

RESUMO

The purpose of this study is to clarify the drug interaction profile of aumolertinib, and the influence of CYP3A4 genetic polymorphism on aumolertinib metabolic characteristics. Through microsomal enzyme reactions, we screened 153 drugs and identified 15 that significantly inhibited the metabolism of aumolertinib. Among them, telmisartan and carvedilol exhibited potent inhibitory activities in rat liver microsomes (RLM) and human liver microsomes (HLM). In vivo, the pharmacokinetic parameters of aumolertinib, including AUC and Cmax, were significantly altered when co-administered with carvedilol, with a notable decrease in the clearance rate CLz/F. Interestingly, the pharmacokinetic parameters of the metabolite HAS-719 exhibited a similar trend as aumolertinib when co-administered. Mechanistically, both telmisartan and carvedilol exhibited a mixed-type inhibition on the metabolism of aumolertinib. Additionally, we used a baculovirus-insect cell expression system to prepare 24 recombinant CYP3A4 microsomes and obtained enzymatic kinetic parameters using aumolertinib as a substrate. Enzyme kinetic studies obtained the kinetic parameters of various CYP3A4 variant-mediated metabolism of aumolertinib. Based on the relative clearance rates, CYP3A4.4, 5, 7, 8, 9, 12, 13, 14, 17, 18, 19, 23, 24, 33, and 34 showed significantly lower clearance rates compared to the wild-type. Among the different CYP3A4 variants, the inhibitory potency of telmisartan and carvedilol on the metabolism of aumolertinib also varied. The IC50 values of telmisartan and carvedilol in CYP3A4.1 were 6.68 ± 1.76 µM and 0.60 ± 0.25 µM, respectively, whereas in CYP3A4.12, the IC50 exceeded 100 µM. Finally, we utilized adeno-associated virus to achieve liver-specific high expression of CYP3A4*1 and CYP3A4*12. In the group with high expression of the less active CYP3A4*12, the magnitude of the drug-drug interaction was significantly attenuated. In conclusion, CYP3A4 genetic polymorphism not only influences the pharmacokinetic characteristics of aumolertinib, but also the inhibitory potency of telmisartan and carvedilol on it.

9.
Biomed Pharmacother ; 174: 116507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565059

RESUMO

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Auranofina , Neoplasias do Colo , Sinergismo Farmacológico , Compostos Heterocíclicos com 3 Anéis , Proteínas Proto-Oncogênicas c-akt , Pironas , Espécies Reativas de Oxigênio , Transdução de Sinais , Tiorredoxina Redutase 1 , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Auranofina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Morfolinas/farmacologia , Células HCT116
10.
Medicine (Baltimore) ; 102(32): e34459, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565882

RESUMO

To investigate the efficacy and safety of Jin three needles combined with Tong Qiao Wu Blood-streaming Tang in patients with acute ischemic stroke (AIS), this retrospective study analyzed the data of patients with AIS between January 2017 and December 2022. The National Institutes of Health Stroke Scale (NIHSS) scores, blood neuron-specific enolase, S100ß protein (S100ß), fibrinogen (FIB), cerebral infarct volume, D-dimer (D-D), prothrombin time (PT), activated partial thromboplastin time, hypersensitive c-reactive protein (hs-CRP), serum tumor necrosis factor-α (TNF-α), and homocysteine (Hcy) were compared between the 2 groups. The treatment effect was significantly better in the observation group than in the comparison group (P < .05). The NIHSS score, neuron-specific enolase, S100ß, and cerebral infarct volume were significantly lower in both groups after treatment than before treatment (P < .05). FIB and D-D levels were significantly lower and APTT and PT levels were significantly higher in both groups after treatment than before treatment (P < .05). TNF-α, hs-CRP, and Hcy were significantly lower in both groups after treatment than before treatment, and TNF-α, hs-CRP and Hcy were significantly lower in the observation group than in the comparison group (P < .05). No statistically significant difference in the incidence of adverse reactions occurred between the 2 groups (P > .05). Combining Jin three needles can improve the therapeutic effect in patients with AIS, promote the recovery of neurological function, improve coagulation function, and reduce the inflammatory response with good safety.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Proteína C-Reativa/metabolismo , Estudos Retrospectivos , Agulhas , Fator de Necrose Tumoral alfa/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Fibrinogênio/uso terapêutico , Infarto Cerebral
11.
PeerJ ; 11: e16051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719112

RESUMO

Since the combination of anticancer drugs and opioids is very common, apatinib and tramadol are likely to be used in combination clinically. This study evaluated the effects of apatinib on the pharmacokinetics of tramadol and its main metabolite O-desmethyltramadol in Sprague-Dawley (SD) rats and the inhibitory effects of apatinib on tramadol in rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP2D6.1. The samples were determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The in vivo results showed that compared with the control group, apatinib increased the AUC(0-t), AUC(0-∞) and Cmax values of tramadol and O-desmethyltramadol, and decreased the values of VZ/F and CLz/F. In addition, the MRT(0-t), MRT(0-∞) values of O-desmethyltramadol were increased. In vitro, apatinib inhibited the metabolism of tramadol by a mixed way with IC50 of 1.927 µM in RLMs, 2.039 µM in HLMs and 15.32 µM in CYP2D6.1. In summary, according to our findings, apatinib has a strong in vitro inhibitory effect on tramadol, and apatinib can increase the analgesic effect of tramadol and O-desmethyltramadol in rats.


Assuntos
Tramadol , Humanos , Ratos , Animais , Tramadol/farmacologia , Cromatografia Líquida , Citocromo P-450 CYP2D6 , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Microssomos Hepáticos
12.
J Cancer ; 14(17): 3309-3320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928418

RESUMO

Background: Non-small-cell lung cancer (NSCLC) is the most common histological subtype of lung cancer with significant morbidity and mortality rates worldwide. Cinobufagin, the primary component of Chansu and the major active ingredient of cinobufacini, has attracted widespread attention for its excellent anticancer effects, but its activity remains poorly characterized in NSCLC. Methods: The functions of cinobufagin treatment in anti-tumor was evaluated using various in vitro and in vivo assays. The change of STAT3 signaling by cinobufagin was analyzed using molecular docking, immunofluorescence technic and western blotting. Results: In vitro, we confirmed the inhibitory effect of cinobufagin on cell viability, proliferation, migration, epithelial-mesenchymal transition (EMT), as well as an apoptosis-inducing effect. The antitumor effects of cinobufagin were confirmed in vivo by measuring tumor growth in a mouse xenograft model. Cinobufagin was found to significantly inhibit the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at tyrosine 705 (Y705) in a time- and concentration-dependent manner. Moreover, cinobufagin reversed IL-6-induced nuclear translocation of STAT3. Conclusions: Our study has demonstrated that cinobufagin exerts an antitumor effect in non-small-cell lung cancer by blocking STAT3 signaling, and cinobufagin is a promising candidate agent for NSCLC therapy.

13.
BMC Chem ; 17(1): 107, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649082

RESUMO

BACKGROUND: This study establishes a UHPLC‒MS/MS method for the detection of zanubrutinib and explores its interaction with fluconazole and isavuconazole in rats. METHODS: A protein precipitation method using acetonitrile was used to prepare plasma samples using ibrutinib as an internal standard. Chromatographic separation and mass spectrometric detection of the analytes and internal standards were performed on a Shimadzu 8040 UHPLC‒MS/MS equipped with a Shim-pack velox C18 column (2.1 × 50 mm, 2.7 µm). Methanol and 0.1% formic acid-water were used as mobile phases. Intraday and interday precision and accuracy, extraction recoveries, and matrix effects of this method were determined. The linearity and sample stability of the method were assessed. Eighteen male Sprague‒Dawley (SD) rats were randomly divided into three groups with zanubrutinib (30 mg/kg) alone, zanubrutinib in combination with fluconazole (20 mg/kg) or zanubrutinib in combination with isavuconazole (20 mg/kg). Blood samples (200 µL) were collected at designated time points (ten evenly distributed time points within 12 h). The concentration of zanubrutinib was determined using the UHPLC‒MS/MS method developed in this study. RESULTS: The typical fragment ions were m/z 472.15 → 290.00 for zanubrutinib and m/z 441.20 → 138.10 for ibrutinib (IS). The range of the standard curve was 1-1000 ng/mL with a regressive coefficient (R2) of 0.999. The recoveries and matrix effects were 91.9-98.2% and 97.5-106.3%, respectively, at different concentration levels. The values for intra- and interday RSD% were lower than 9.8% and 5.8%, respectively. The RSD% value was less than 10.3%, and the RE% value was less than ± 4.0% under different storage conditions. Analysis of pharmacokinetic results suggested that coadministration with isavuconazole or fluconazole significantly increased the area under the curve (1081.67 ± 43.81 vs. 1267.55 ± 79.35 vs. 1721.61 ± 219.36), peak plasma concentration (332.00 ± 52.79 vs. 396.05 ± 37.19 vs. 494.51 ± 130.68), and time to peak (1.83 ± 0.41 vs. 2.00 ± 0.00 vs. 2.17 ± 0.41) compared to zanubrutinib alone. CONCLUSION: This study provides information to understand the metabolism of zanubrutinib with concurrent use with isavuconazole or fluconazole, and further clinical trials are needed to validate the results in animals.

14.
Int Immunopharmacol ; 118: 110065, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004347

RESUMO

BACKGROUND: Acute tubular necrosis (ATN) is a common type of acute renal failure. Recent studies have shown that NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis in macrophages plays a crucial role in the progression of ATN. Previously, we synthesized an anti-inflammatory compound 15a based on Tanshinone IIA (Tan IIA). In the present study, we found that compound 15a exhibited a greater inhibitory effect on NLRP3-mediated pyroptosis than Tan IIA in vitro. METHODS: C57BL/6 and NLRP3-knockout (NLRP3-KO) mice were intraperitoneally injected with LPS or folic acid (FA) to develop ATN. In vitro, bone marrow-derived macrophages (BMDMs) were treated with LPS for 3 h and then treated with ATP for 0.5 h. RESULTS: We explored the mechanism by which compound 15a inhibited NLRP3 inflammasome in BMDMs as well as its renal protective effect against ATN in mice. We found that compound 15a exhibited a protective effect on mitochondria and reduced the production of mitochondrial reactive oxygen species (mtROS). Moreover, we revealed that compound 15a remarkably reduced the production of mtROS by promoting mitophagy, which resulted in the inhibition of NLRP3 inflammasome to alleviates ATN in mice. CONCLUSION: In summary, compound 15a inhibited NLRP3-mediated inflammation by activating mitophagy in macrophages to alleviate ATN. Our results identified compound 15a as a promising candidate for the treatment of NLRP3-driven ATN.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Mitofagia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Macrófagos , Espécies Reativas de Oxigênio , Camundongos Knockout , Inflamação/tratamento farmacológico , Necrose/tratamento farmacológico
15.
Front Pharmacol ; 13: 960311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935882

RESUMO

Almonertinib was approved for the first-line treatment of advanced NSCLC patients with EGFR-TKI-sensitive genetic mutations by National Medical Products Administration (NMPA) in 2021.The purpose of this study was to establish and validate a fast, accurate, stable and facile ultra-performance liquid chromatography-tandem mass spectrometry method for the quantification of almonertinib in rat plasma, it was employed to explore the effect of Paxlovid on the pharmacokinetics of almonertinib in rats. Zanubrutinib was used as an internal standard (IS), and the plasma samples were prepared by the protein precipitation method using acetonitrile. Chromatographic separation was carried out on a Shimadzu LC-20AT ultra-performance liquid chromatography system using a Shim-pack velox C18 (2.1× 50 mm, 2.7 µM) column. The mobile phase consisted of methanol and 0.1% formic acid-water. Mass spectrum analysis was executed using Shimadzu 8040 Triple quadrupole mass spectrometry. The precursor and product ions of the analyte and internal standard were detected in multiple reaction monitoring (MRM) mode. The typical fragment ions were m/z 526.20 → 72.10 for almonertinib and m/z 472.15 → 290.00 for zanubrutinib (IS). The method was validated to have good linearity for quantifying almonertinib in rat plasma from 0.1-1000 ng/ml (R2 = 0.999), and the LLOQ was 0.1 ng/ml. The validity of this method was sufficiently verified for selectivity, specificity, extraction recovery, matrix effect, accuracy, precision and stability. The validated UHPLC-MS/MS method was successfully applied to the drug interaction study of almonertinib with Paxlovid in rats. Paxlovid significantly inhibits the metabolism of almonertinib and increased the exposure of almonertinib. This study can help us to understand the metabolic profile of almonertinib better, and further human trials should be conducted to validate the results.

16.
Clin Transl Med ; 12(3): e777, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35343085

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most predominant form of liver diseases worldwide. Recent evidence shows that myeloid differentiation factor 2 (MD2), a protein in innate immunity and inflammation, regulates liver injury in models of NAFLD. Here, we investigated a new mechanism by which MD2 participates in the pathogenesis of experimental NAFLD. METHODS: Wild-type, Md2-/- and bone marrow reconstitution mice fed with high-fat diet (HFD) were used to identify the role of hepatocyte MD2 in NAFLD. Transcriptomic RNA-seq and pathway enrich analysis were performed to explore the potential mechanisms of MD2. In vitro, primary hepatocytes and macrophages were cultured for mechanistic studies. RESULTS: Transcriptome analysis and bone marrow reconstitution studies showed that hepatocyte MD2 may participate in regulating lipid metabolism in models with NAFLD. We then discovered that Md2 deficiency in mice prevents HFD-mediated suppression of AMP-activated protein kinase (AMPK). This preservation of AMPK in Md2-deficient mice was associated with normalized sterol regulatory element binding protein 1 (SREBP1) transcriptional program and a lack of lipid accumulation in both hepatocytes and liver. We then showed that hepatocyte MD2 links HFD to AMPK/SREBP1 through TANK binding kinase 1 (TBK1). In addition, MD2-increased inflammatory factor from macrophages induces hepatic TBK1 activation and AMPK suppression. CONCLUSION: Hepatocyte MD2 plays a pathogenic role in NAFLD through TBK1-AMPK/SREBP1 and lipid metabolism pathway. These studies provide new insight into a non-inflammatory function of MD2 and evidence for the important role of MD2 in NALFD.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases/genética
17.
Oxid Med Cell Longev ; 2022: 6324292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251480

RESUMO

Ovarian cancer is one of the fatal gynecological cancers around the world. Cisplatin is the first-line chemotherapy drug for the clinical treatment of ovarian cancer. However, many patients with ovarian cancer are still suffering from resistance to cisplatin. Therefore, the new drug combinations or treatment strategies for ovarian cancer are urgently needed. Glaucocalyxin B (GLB), a diterpenoid isolated from the aerial parts of Rabdosia japonica, has shown antitumor activity in some tumors. However, the mechanisms by which GLB inhibits ovarian cancer remain unclear. In the present study, we showed that GLB potently inhibits ovarian cancer cell growth in a dose-dependent manner. Furthermore, we found that GLB has a notably synergistic antitumor effect with cisplatin. Mechanistically, we found that GLB enhances the sensitivity of ovarian cancer cells to cisplatin via increasing reactive oxygen species (ROS) levels, the phosphorylation of c-Jun N-terminal kinase (JNK), and DNA damage. Interestingly, a synergistic inhibitory effect of GLB with cisplatin was also observed in the cells which were resistance to cisplatin. Together, these data suggest that GLB can sensitize ovarian cancer cells to cisplatin by increasing ROS levels.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Isodon/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Ovarianas/patologia , Espécies Reativas de Oxigênio/metabolismo
18.
Biomed Pharmacother ; 141: 111874, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229251

RESUMO

Bicyclol has been approved as an anti-inflammatory, hepatoprotective drug in China to treat various forms of hepatitis. However, the role of bicyclol in non-alcoholic fatty liver disease (NAFLD) is unknown. In this study, NAFLD model was established by feeding mice with high fat diet (HFD) for 16 weeks, and bicyclol (25 and 50 mg/kg) were orally administered for the last 4 weeks. Although bicyclol treatment did not change the body weight of mice, bicyclol administration significantly improved HFD-induced dyslipidemia, NAFLD activity score, hepatic apoptosis, systemic and hepatic inflammation, and liver fibrosis in the mice. Moreover, bicyclol treatment significantly inhibited HFD-induced activation of MAPKs and NF-κB signaling pathways that may mediate the inflammatory responses. Further in vitro studies showed that bicyclol pretreatment markedly ameliorated PA-induced inflammatory responses in human hepatocyte HL-7702 cells and mouse peritoneal macrophages through inhibiting MAPKs and NF-κB signaling pathways. These data indicated that bicyclol may have the potency to treat NAFLD by reducing inflammation.


Assuntos
Compostos de Bifenilo/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Compostos de Bifenilo/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inibidores de Proteínas Quinases/farmacologia
19.
IEEE Access ; 9: 17787-17802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786302

RESUMO

This study is devoted to proposing a useful intelligent prediction model to distinguish the severity of COVID-19, to provide a more fair and reasonable reference for assisting clinical diagnostic decision-making. Based on patients' necessary information, pre-existing diseases, symptoms, immune indexes, and complications, this article proposes a prediction model using the Harris hawks optimization (HHO) to optimize the Fuzzy K-nearest neighbor (FKNN), which is called HHO-FKNN. This model is utilized to distinguish the severity of COVID-19. In HHO-FKNN, the purpose of introducing HHO is to optimize the FKNN's optimal parameters and feature subsets simultaneously. Also, based on actual COVID-19 data, we conducted a comparative experiment between HHO-FKNN and several well-known machine learning algorithms, which result shows that not only the proposed HHO-FKNN can obtain better classification performance and higher stability on the four indexes but also screen out the key features that distinguish severe COVID-19 from mild COVID-19. Therefore, we can conclude that the proposed HHO-FKNN model is expected to become a useful tool for COVID-19 prediction.

20.
Saudi J Biol Sci ; 27(4): 1057-1065, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32256166

RESUMO

Despite the knowledge regarding allelopathy, known as a major ecological mechanism for biological weed control, had increased greatly, the role of soil microorganisms in that field remained controversial. The study sought to evaluate the interference potential of soil microorganisms, residues-derived allelochemicals and their interaction on seed germination and understand the variation of microbial community in allelopathic activities. Three different rice residues-derived fractions from variety PI312777 (extracts, straw fraction and fresh residue) were applied to sterile and live soils to disentangle the interference potential of soil microorganisms, residues-derived allelochemicals and their interaction concerned allelopathic activities. The results demonstrated that microbe-only and residues-only exerted onefold promotion and inhibition effects on lettuce (Lactuca sativa Linn.) seed germination, respectively, whereas, microbe-by-residues interaction showed an inhibition at the beginning, and a feeble promotion later. The 20 most dominant genera of microbes were classified into three clusters, with 13 genera in one cluster, only 1 in the second cluster and 6 in the third one. The genera in the first cluster commonly exerted negative effects on phenol content, while showed positive correlation with seed germination. Interestingly, Bacillus, clustered in the second cluster, had an opposite effect alone. The third cluster genera somehow had a weak correlation with both germination as well as the release of the allelochemicals. Overall, we incorporated molecular methodology for tracking bacterial impacts during incubation with allelochemicals, and demonstrated the mutable role of soil microbes in allelopathy. It may be potentially important for stimulating the beneficial roles of microbes for environmentally friendly weed management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA