Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
EMBO J ; 43(1): 61-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177310

RESUMO

Accumulation of DNA damage in the lung induces cellular senescence and promotes age-related diseases such as idiopathic pulmonary fibrosis (IPF). Hence, understanding the mechanistic regulation of DNA damage repair is important for anti-aging therapies and disease control. Here, we identified an m6A-independent role of the RNA-binding protein YTHDC1 in counteracting stress-induced pulmonary senescence and fibrosis. YTHDC1 is primarily expressed in pulmonary alveolar epithelial type 2 (AECII) cells and its AECII expression is significantly decreased in AECIIs during fibrosis. Exogenous overexpression of YTHDC1 alleviates pulmonary senescence and fibrosis independent of its m6A-binding ability, while YTHDC1 deletion enhances disease progression in mice. Mechanistically, YTHDC1 promotes the interaction between TopBP1 and MRE11, thereby activating ATR and facilitating DNA damage repair. These findings reveal a noncanonical function of YTHDC1 in delaying cellular senescence, and suggest that enhancing YTHDC1 expression in the lung could be an effective treatment strategy for pulmonary fibrosis.


Assuntos
Senescência Celular , Fibrose Pulmonar Idiopática , Proteínas do Tecido Nervoso , Fatores de Processamento de RNA , Animais , Camundongos , Envelhecimento/genética , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Mol Cell ; 79(3): 425-442.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615088

RESUMO

Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.


Assuntos
Adenosina/análogos & derivados , Neoplasias de Cabeça e Pescoço/genética , Metiltransferases/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adenosina/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Bleomicina/farmacologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Células HEK293 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Hibridização de Ácido Nucleico , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS Genet ; 19(7): e1010856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463174

RESUMO

Premature telomere shortening is a known factor correlated to idiopathic pulmonary fibrosis (IPF) occurrence, which is a chronic, progressive, age-related disease with high mortality. The etiology of IPF is still unknown. Here, we found that UBQLN1 plays a key role in telomere length maintenance and is potentially relevant to IPF. UBQLN1 involves in DNA replication by interacting with RPA1 and shuttling it off from the replication fork. The deficiency of UBQLN1 retains RPA1 at replication fork, hinders replication and thus causes cell cycle arrest and genome instability. Especially at telomere regions of the genome, where more endogenous replication stress exists because of G rich sequences, UBQLN1 depletion leads to rapid telomere shortening in HeLa cells. It revealed that UBQLN1 depletion also shortens telomere length at mouse lung and accelerates mouse lung fibrosis. In addition, the UBQLN1 expression level in IPF patients is downregulated and correlated to poor prognosis. Altogether, these results uncover a new role of UBQLN1 in ensuring DNA replication and maintaining telomere stability, which may shed light on IPF pathogenesis and prevention.


Assuntos
Fibrose Pulmonar Idiopática , Encurtamento do Telômero , Humanos , Animais , Camundongos , Encurtamento do Telômero/genética , Células HeLa , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/patologia , Homeostase do Telômero , Telômero/genética , Proteína de Replicação A/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Annu Rev Biomed Eng ; 26(1): 475-501, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38594921

RESUMO

Selective and remote manipulation of activity for biomolecules, including protein, DNA, and lipids, is crucial to elucidate their molecular function and to develop biomedical applications. While advances in tool development, such as optogenetics, have significantly impacted these directions, the requirement for genetic modification significantly limits their therapeutic applications. Plasmonic nanoparticle heating has brought new opportunities to the field, as hot nanoparticles are unique point heat sources at the nanoscale. In this review, we summarize fundamental engineering problems such as plasmonic heating and the resulting biomolecular responses. We highlight the biological responses and applications of manipulating biomolecules and provide perspectives for future directions in the field.


Assuntos
DNA , DNA/química , Humanos , Proteínas/química , Optogenética/métodos , Animais , Nanopartículas/química , Nanotecnologia/métodos , Lipídeos/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície , Temperatura Alta
5.
Hum Genomics ; 18(1): 55, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822443

RESUMO

BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Masculino , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Idoso , Prognóstico , Variações do Número de Cópias de DNA/genética , Mutação/genética , Instabilidade de Microssatélites
6.
Exp Cell Res ; 434(1): 113848, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918704

RESUMO

BACKGROUND: Epilepsy is a neurological disorder characterized by recurrent seizures and is often unresponsive to current treatment options. Ferroptosis, a recently defined iron-dependent regulated cell death, has been suggested as a potential therapeutic target for epilepsy due to its association with oxidative stress. Additionally, circRNA SLC8A1 (circSLC8A1) has been implicated in various neurological disorders and oxidative stress-related diseases but its involvement in epilepsy progression, particularly in relation to ferroptosis and oxidative stress, remains unclear. METHODS: qRT-PCR, Western blot, IHC and ELISA assays were employed to validate the relative expression of targeted genes and proteins. The levels of ROS, iron, LOP and GSH were detected by commercial kits. RNA pull-down and RIP assays were employed to detect the interactions among circSLC8A1, FUS and ATF3. A rat epilepsy model was established for further in vivo confirmation. RESULTS AND CONCLUSION: In this study, we investigated the potential involvement of circSLC8A1 in epilepsy progression and its connection to ferroptosis and oxidative stress. Our findings demonstrate that circSLC8A1 triggers neuronal ferroptosis by stabilizing ATF3 mRNA expression through recruitment with FUS. The induced neuronal ferroptosis contributes to epilepsy progression. These results enhance our understanding of epilepsy pathogenesis and may provide insights for the development of novel therapeutic strategies.


Assuntos
Epilepsia , Ferroptose , Animais , Ratos , Epilepsia/genética , Ferroptose/genética , Hipocampo , Ferro , Estabilidade de RNA , RNA Circular/genética , Proteína FUS de Ligação a RNA/metabolismo
7.
Kidney Int ; 105(1): 115-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914087

RESUMO

Arterial calcification is a hallmark of vascular pathology in the elderly and in individuals with chronic kidney disease (CKD). Vascular smooth muscle cells (VSMCs), after attaining a senescent phenotype, are implicated in the calcifying process. However, the underlying mechanism remains to be elucidated. Here, we reveal an aberrant upregulation of transcriptional factor GATA6 in the calcified aortas of humans, mice with CKD and mice subjected to vitamin D3 injection. Knockdown of GATA6, via recombinant adeno-associated virus carrying GATA6 shRNA, inhibited the development of arterial calcification in mice with CKD. Further gain- and loss-of function experiments in vitro verified the contribution of GATA6 in osteogenic differentiation of VSMCs. Samples of human aorta exhibited a positive relationship between age and GATA6 expression and GATA6 was also elevated in the aortas of old as compared to young mice. Calcified aortas displayed senescent features with VSMCs undergoing premature senescence, blunted by GATA6 downregulation. Notably, abnormal induction of GATA6 in senescent and calcified aortas was rescued in Sirtuin 6 (SIRT6)-transgenic mice, a well-established longevity mouse model. Suppression of GATA6 accounted for the favorable effect of SIRT6 on VSMCs senescence prevention. Mechanistically, SIRT6 inhibited the transcription of GATA6 by deacetylation and increased degradation of transcription factor Nkx2.5. Moreover, GATA6 was induced by DNA damage stress during arterial calcification and subsequently impeded the Ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair process, leading to accelerated VSMCs senescence and osteogenic differentiation. Thus, GATA6 is a novel regulator in VSMCs senescence. Our findings provide novel insight in arterial calcification and a potential new target for intervention.


Assuntos
Insuficiência Renal Crônica , Sirtuínas , Calcificação Vascular , Humanos , Camundongos , Animais , Idoso , Músculo Liso Vascular , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/farmacologia , Osteogênese , Células Cultivadas , Insuficiência Renal Crônica/patologia , Dano ao DNA , Senescência Celular/genética , Envelhecimento/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
8.
J Transl Med ; 22(1): 47, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216996

RESUMO

BACKGROUND: Lung cancer is the most prevalent cancer worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of all cases. Circular RNAs(circRNA) play crucial roles in regulating the progression of lung cancer. Despite the identification of a large number of circRNAs, their expression patterns, functions, and mechanisms of action in NSCLC development remain unclear.This study aims to investigate the transcriptional expressions, functions, and potential mechanisms of circRNA hsa_circ_0050386 in NSCLC. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for the analysis of hsa_circ_0050386 expression. Cell proliferation was detected using the IncuCyte Live Cell Analysis System and clone formation assays. Migration and invasion of NSCLC cells were evaluated through Transwell assays. Flow cytometry was performed to assay cell cycle and apoptosis. Western blot was used to investigate protein expression. Protein binding analysis was conducted by employing pull-down assays, RNA immunoprecipitation (RIP), and mass spectrometry. The role of hsa_circ_0050386 in vivo was evaluated through the use of a xenograft model. RESULTS: The study discovered that hsa_circ_0050386 displayed lower expression levels in NSCLC tissues when compared to adjacent normal tissues. Patients exhibiting lower levels of hsa_circ_0050386 expression exhibited an inverse correlation with the Clinical Stage, T-stage, and M-stage of NSCLC. Functionally, hsa_circ_0050386 suppressed the proliferation and invasion of NSCLC cells both in vitro and in vivo. A comprehensive examination exposed the interaction between hsa_circ_0050386 and RNA binding protein Serine and arginine-rich splicing factor 3 (SRSF3), resulting in the down-regulation of Fibronectin 1 (FN1) expression, which inhibits the progression of NSCLC. CONCLUSIONS: Our study shows that hsa_circ_0050386 suppresses the malignant biological behavior of NSCLC cells by down-regulating the expression of FN1, and may serve as a potential biomarker and therapeutic target for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibronectinas , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , RNA/genética , RNA Circular/genética , Fatores de Processamento de Serina-Arginina
9.
New Phytol ; 242(6): 2635-2651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634187

RESUMO

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Mutação , Oryza , Proteínas de Plantas , Amido , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Endosperma/metabolismo , Endosperma/crescimento & desenvolvimento , Amido/metabolismo , Amido/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação/genética , Ligação Proteica , Plastídeos/metabolismo , Teste de Complementação Genética , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Termotolerância , Fatores de Transcrição
10.
Opt Express ; 32(11): 19196-19209, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859059

RESUMO

We believe this to be a new superposition twisted Hermite-Gaussian Schell-model (STHGSM) beam hat is proposed. Analytic formulas for the intensity distribution and propagation factor of the STHGSM beam in non-Kolmogorov turbulence are derived by utilizing the generalized Huygens-Fresnel principle (HFP) and the Wigner function. The evolution characteristics of STHGSM beams propagating are numerically calculated and analyzed. Our findings indicate that the light intensity of the STHGSM beam gradually undergoes splitting and rotation around the axis during propagation through non-Kolmogorov turbulence, eventually evolving into a diagonal lobe shape at a certain distance of transmission. The anti-turbulence capability of the beam strengthens with higher beam order or twist factor values.

11.
Exp Eye Res ; 241: 109827, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354945

RESUMO

Myopia is a global health and economic issue. Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of many ocular diseases. We first evaluated the circRNA profiles and possible roles in vitreous humor samples of individuals with high myopia by a competitive endogenous RNA (ceRNA) array. Vitreous humor samples were collected from 15 high myopic (5 for ceRNA array, and 10 for qPCR) and 15 control eyes (5 for ceRNA array, and 10 for qPCR) with idiopathic epiretinal membrane (ERM) and macular hole (MH). 486 circRNAs (339 upregulated and 147 downregulated) and 264 mRNAs (202 upregulated and 62 downregulated) were differentially expressed between the high myopia and control groups. The expression of hsa_circ_0033079 (hsa-circDicer1), hsa_circ_0029989 (hsa-circNbea), hsa_circ_0019072 (hsa-circPank1) and hsa_circ_0089716 (hsa-circEhmt1) were validated by qPCR. Pearson analysis and multivariate regression analysis showed positive and significant correlations for axial length with hsa-circNbea and hsa-circPank1. KEGG analysis showed that the target genes of circRNAs were enriched in the mTOR, insulin, cAMP, and VEGF signaling pathways. GO analysis indicated that circRNAs mainly targeted transcription, cytoplasm, and protein binding. CircRNA-associated ceRNA network analysis and PPI network analysis identified several critical genes for myopia. The expression of circNbea, circPank1, miR-145-5p, miR-204-5p, Nras, Itpr1 were validated by qPCR in the sclera of form-deprivation myopia (FDM) mice model. CircPank1/miR-145-5p/NRAS and circNbea/miR-204-5p/ITPR1 were identified and may be important in the progression of myopia. Our findings suggest that circRNAs may contribute to the pathogenesis of myopia and may serve as potential biomarkers.


Assuntos
MicroRNAs , Miopia , Humanos , Animais , Camundongos , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Corpo Vítreo/metabolismo , RNA Mensageiro/metabolismo , RNA Endógeno Competitivo , Miopia/genética
12.
Cell Mol Neurobiol ; 44(1): 19, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315298

RESUMO

Retinal vasoactive intestinal peptide amacrine cells (VIP-ACs) play an important role in various retinal light-mediated pathological processes related to different developmental ocular diseases and even mental disorders. It is important to characterize the developmental changes in VIP-ACs to further elucidate their mechanisms of circuit function. We bred VIP-Cre mice with Ai14 and Ai32 to specifically label retinal VIP-ACs. The VIP-AC soma and spine density generally increased, from postnatal day (P)0 to P35, reaching adult levels at P14 and P28, respectively. The VIP-AC soma density curve was different with the VIP-AC spine density curve. The total retinal VIP content reached a high level plateau at P14 but was decreased in adults. From P14 to P16, the resting membrane potential (RMP) became more negative, and the input resistance decreased. Cell membrane capacitance (MC) showed three peaks at P7, P12 and P16. The RMP and MC reached a stable level similar to the adult level at P18, whereas input resistance reached a stable level at P21. The percentage of sustained voltage-dependent potassium currents peaked at P16 and remained stable thereafter. The spontaneous excitatory postsynaptic current and spontaneous inhibitory postsynaptic current frequencies and amplitudes, as well as charge transfer, peaked at P12 to P16; however, there were also secondary peaks at different time points. In conclusion, we found that the second, third and fourth weeks after birth were important periods of VIP-AC development. Many developmental changes occurred around eye opening. The development of soma, dendrite and electrophysiological properties showed uneven dynamics of progression. Cell differentiation may contribute to soma development whereas the changes of different ion channels may play important role for spine development.


Assuntos
Células Amácrinas , Peptídeo Intestinal Vasoativo , Animais , Camundongos , Diferenciação Celular , Potenciais da Membrana/fisiologia , Retina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
13.
Mol Pharm ; 21(4): 1677-1690, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478716

RESUMO

Chronic periodontitis is a chronic, progressive, and destructive disease. Especially, the large accumulation of advanced glycation end products (AGEs) in a diseased body will aggravate the periodontal tissue damage, and AGEs induce M1 macrophages. In this project, the novel nanodrugs, glucose-PEG-PLGA@MCC950 (GLU@MCC), are designed to achieve active targeting with the help of glucose transporter 1 (GLUT1) which is highly expressed in M1 macrophages induced by AGEs. Then, the nanodrugs release MCC950, which is a kind of NLRP3 inhibitor. These nanodrugs not only can improve the water solubility of MCC950 but also exhibit superior characteristics, such as small size, stability, innocuity, etc. In vivo experiments showed that GLU@MCC could reduce periodontal tissue damage and inhibit cell apoptosis in periodontitis model mice. In vitro experiments verified that its mechanism of action might be closely related to the inhibition of the NLRP3 inflammatory factor in M1 macrophages. GLU@MCC could effectively reduce the damage to H400 cells caused by AGEs, decrease the expression of NLRP3, and also obviously reduce the M1-type macrophage pro-inflammatory factors such as IL-18, IL-1ß, caspase-1, and TNF-α. Meanwhile, the expression of anti-inflammatory factor Arg-1 in the M2 macrophage was increased. In brief, GLU@MCC would inhibit the expression of inflammatory factor NLRP3 and exert antiperiodontal tissue damage in chronic periodontitis via GLUT1 in the M1 macrophage as the gating target. This study provides a novel nanodrug for chronic periodontitis treatment.


Assuntos
Periodontite Crônica , Nanopartículas , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Periodontite Crônica/tratamento farmacológico , Periodontite Crônica/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Macrófagos
14.
Circ Res ; 130(5): 728-740, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35135328

RESUMO

BACKGROUND: Marfan syndrome (MFS) is associated with TGF (transforming growth factor) ß-stimulated ERK (extracellular signal-regulated kinase) activity in vascular smooth muscle cells (VSMCs), which adopt a mixed synthetic/contractile phenotype. In VSMCs, TGFß induces IL (interleukin) 11) that stimulates ERK-dependent secretion of collagens and MMPs (matrix metalloproteinases). Here, we examined the role of IL11 in the MFS aorta. METHODS: We used echocardiography, histology, immunostaining, and biochemical methods to study aortic anatomy, physiology, and molecular endophenotypes in Fbn1C1041G/+ mice, an established murine model of MFS (mMFS). mMFS mice were crossed to an IL11-tagged EGFP (enhanced green fluorescent protein; Il11EGFP/+) reporter strain or to a strain deleted for the IL11 receptor (Il11ra1-/-). In therapeutic studies, mMFS were administered an X209 (neutralizing antibody against IL11RA [IL11 receptor subunit alpha]) or IgG for 20 weeks and imaged longitudinally. RESULTS: IL11 mRNA and protein were elevated in the aortas of mMFS mice, as compared to controls. mMFS mice crossed to Il11EGFP/+ mice had increased IL11 expression in VSMCs, notably in the aortic root and ascending aorta. As compared to the mMFS parental strain, double mutant mMFS:Il11ra1-/- mice had reduced aortic dilatation and exhibited lesser fibrosis, inflammation, elastin breaks, and VSMC loss, which was associated with reduced aortic COL1A1 (collagen type I alpha 1 chain), IL11, MMP2/9, and phospho-ERK expression. To explore therapeutic targeting of IL11 signaling in MFS, we administered either a neutralizing antibody against IL11RA (X209) or an IgG control. After 20 weeks of antibody administration, as compared to IgG, mMFS mice receiving X209 had reduced thoracic and abdominal aortic dilation as well as lesser fibrosis, inflammation, elastin breaks, and VSMC loss. By immunoblotting, X209 was shown to reduce aortic COL1A1, IL11, MMP2/9, and phospho-ERK expression. CONCLUSIONS: In MFS, IL11 is upregulated in aortic VSMCs to cause ERK-related thoracic aortic dilatation, inflammation, and fibrosis. Therapeutic inhibition of IL11, imminent in clinical trials, might be considered as a new approach in MFS.


Assuntos
Doenças da Aorta , Síndrome de Marfan , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Aorta/metabolismo , Doenças da Aorta/patologia , Modelos Animais de Doenças , Elastina/metabolismo , Fibrose , Imunoglobulina G/metabolismo , Inflamação/metabolismo , Interleucina-11/metabolismo , Subunidade alfa de Receptor de Interleucina-11 , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Receptores de Interleucina-11/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 43(5): 739-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924234

RESUMO

BACKGROUND: Marfan Syndrome (MFS) is an inherited connective tissue disorder caused by mutations in the FBN1 (fibrillin-1) gene. Lung abnormalities are common in MFS, but their pathogenesis is poorly understood. IL11 (interleukin-11) causes aortic disease in a mouse model of MFS and was studied here in the lung. METHODS: We examined histological and molecular phenotypes in the lungs of Fbn1C1041G/+ mice (mouse model of Marfan Syndrome [mMFS]), an established mouse model of MFS. To identify IL11-expressing cells, we used immunohistochemistry on lungs of 4- and 16-week-old Fbn1C1041G/+:Il11EGFP/+ reporter mice. We studied the effects of IL11 inhibition by RT-qPCR, immunoblots and histopathology in lungs from genetic or pharmacologic models: (1) 16-week-old IL11 receptor (IL11RA) knockout mMFS mice (Fbn1C1041G/+:Il11ra1-/- mice) and (2) in mMFS mice administered IgG control or interleukin-11 receptor antibodies twice weekly from 4 to 24 weeks of age. RESULTS: mMFS lungs showed progressive loss and enlargement of distal airspaces associated with increased proinflammatory and profibrotic gene expression as well as matrix metalloproteinases 2, 9, and 12. IL11 was increased in mMFS lungs and localized to smooth muscle and endothelial cells in young mMFS mice in the Fbn1C1041G/+:Il11EGFP/+ reporter strain and in fibroblasts, in older mice. In mMFS mice, genetic (Fbn1C1041G/+:Il11ra1-/-) or pharmacologic (anti-interleukin-11 receptor) inhibition of IL11 signaling reduced lung emphysema, fibrosis, and inflammation. This protective effect was associated with reduced pathogenic ERK1/2 signaling and lower metalloproteinase 2, 9, and 12 expression. CONCLUSIONS: IL11 causes lung disease in mMFS. This reveals a shared IL11-driven disease mechanism in lung and aorta in MFS and suggests inhibition of IL11 signaling as a holistic approach for treating multiorgan morbidity in MFS.


Assuntos
Interleucina-11 , Síndrome de Marfan , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrilina-1/genética , Interleucina-11/genética , Subunidade alfa de Receptor de Interleucina-11 , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Metaloproteinase 2 da Matriz/genética , Camundongos Knockout , Enfisema Pulmonar/complicações , Enfisema Pulmonar/genética
16.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38262050

RESUMO

Chemodynamic therapy (CDT) has gained increasing attention by virtue of its high tumor specificity and low side effect. However, the low concentration of hydrogen peroxide (H2O2) in the tumor site suppresses the therapeutic efficacy of CDT. To improve the efficacy, introducing other kind of therapeutic modality is a feasible choice. Herein, we develop a self-amplified activatable nanomedicine (PCPTH NP) for chemodynamic/chemo combination therapy. PCPTH NP is composed of a H2O2-activatable amphiphilic prodrug PEG-PCPT and hemin. Upon addition of H2O2, the oxalate linkers within PCPTH NP are cleaved, which makes the simultaneous release of CPT and hemin. The released CPT can not only kill cancer cells but also upregulate the intracellular reactive oxygen species (ROS) level. The elevated ROS level may accelerate the release of drugs and enhance the CDT efficacy. PCPTH NP shows a H2O2concentration dependent release profile, and can effectively catalyze H2O2into hydroxyl radical (·OH) under acidic condition. Compared with PCPT NP without hemin, PCPTH NP has better anticancer efficacy bothin vitroandin vivowith high biosafety. Thus, our study provides an effective approach to improve the CDT efficacy with high tumor specificity.


Assuntos
Nanopartículas , Neoplasias , Humanos , Hemina , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Quimioterapia Combinada , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
17.
J Periodontal Res ; 59(1): 128-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947055

RESUMO

OBJECTIVE: Our study was designed to explore the role of IL-37 in M1/M2 macrophage polarization imbalance in the pathogenesis of periodontitis. BACKGROUND: Periodontitis is a chronic progressive inflammatory disease featured by gingival inflammation and alveolar bone resorption. Recent research has revealed that regulating macrophage polarization is a viable method to ameliorate periodontal inflammation. IL-37 is an anti-inflammatory cytokine, which has been reported to inhibit innate and adaptive immunity. METHODS: For in vitro experiment, mouse macrophage RAW264.7 cells were pretreated with 0.1 ng/mL recombinant human IL-37. M1 and M2 polarizations of RAW264.7 cells were induced by 100 ng/mL LPS and 20 ng/mL IL-4, respectively. The expression of M1 (iNOS, TNF-α, and IL-6) and M2 (CD206, Arg1, and IL-10) phenotype markers in RAW264.7 cells was detected by RT-qPCR, western blotting, and immunofluorescence staining. For in vivo experiment, experimental periodontitis mouse models were established by sterile silk ligation (5-0) around the bilateral maxillary second molar of mice for 1 week. H&E staining of the maxillary alveolar bone was used to show the resorption of root cementum and dentin. Alveolar bone loss in mouse models was evaluated through micro-CT analysis. The expression of iNOS and CD206 in gingival tissues was assessed by immunohistochemistry staining. NLRP3 inflammasome activation was confirmed by western blotting. RESULTS: IL-37 pretreatment reduced iNOS, TNF-α, and IL-6 expression in LPS-treated RAW264.7 cells but increased CD206, Arg1, and IL-10 in IL-4-treated RAW264.7 cells. LPS-induced upregulation in NLRP3, GSDMD, cleaved-IL-1ß, and cleaved-caspase-1 expression was antagonized by IL-37 treatment. In addition, IL-37 administration ameliorated the resorption of root cementum and dentin in periodontitis mouse models. IL-37 prominently decreased iNOS+ cell population but increased CD206+ cell population in gingival tissues of periodontitis mice. The enhancement in NLRP3, GSDMD, cleaved-IL-1ß, and cleaved-caspase-1 expression in the gingival tissues of periodontitis mice was offset by IL-37 administration. CONCLUSION: IL-37 prevents the progression of periodontitis by suppressing NLRP3 inflammasome activation and mediating M1/M2 macrophage polarization.


Assuntos
Interleucina-10 , Periodontite , Camundongos , Humanos , Animais , Interleucina-10/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-4 , Interleucina-6/metabolismo , Macrófagos/metabolismo , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Inflamação/patologia , Caspase 1/metabolismo
18.
Mol Biol Rep ; 51(1): 651, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734860

RESUMO

BACKGROUND: Canine atopic dermatitis (CAD) is a common genetically predisposed, inflammatory, and pruritic skin disorder that affects dogs globally. To date, there are no specific biomarkers available to diagnose CAD, and the current diagnosis is based on a combination of criteria including patient history, clinical signs, and exclusion of other relevant differential diagnoses. METHODS AND RESULTS: We examined the gene expression of phosphodiesterase 4D (PDE4D) in peripheral blood mononuclear cells (PBMCs), as well as miR-203 and miR-483 in plasma, in three groups: healthy dogs, CAD dogs, and other inflammatory pruritic skin diseases (OIPSD) such as pemphigus foliaceus, scabies, cutaneous lymphoma, and dermatophytosis. Our results showed that PDE4D gene expression in the CAD group is statistically higher compared to those in the healthy and OIPSD groups, suggesting PDE4D may be a specific marker for CAD. Nevertheless, no correlation was found between PDE4D gene expression levels and the lesion severity gauged by CAD severity index-4 (CADESI-4). We also showed that miR-203 is a generic marker for clinical dermatitis and differentiates both CAD and OIPSD inflammatory conditions from healthy controls. CONCLUSIONS: We show that PDE4D is a potential marker to differentiate CAD from non-atopic healthy and OIPSD while miR-203 may be a potential marker for general dermatologic inflammation. Future study of PDE4D and miR-203 on a larger scale is warranted.


Assuntos
Biomarcadores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Dermatite Atópica , Doenças do Cão , MicroRNAs , Dermatite Atópica/genética , Dermatite Atópica/veterinária , Dermatite Atópica/sangue , Dermatite Atópica/diagnóstico , Animais , Cães , MicroRNAs/genética , MicroRNAs/sangue , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Biomarcadores/sangue , Doenças do Cão/genética , Doenças do Cão/diagnóstico , Doenças do Cão/sangue , Masculino , Leucócitos Mononucleares/metabolismo , Feminino
19.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526666

RESUMO

Gene retroposition is known to contribute to patterns of gene evolution and adaptations. However, possible negative effects of gene retroposition remain largely unexplored since most previous studies have focused on between-species comparisons where negatively selected copies are mostly not observed, as they are quickly lost from populations. Here, we show for natural house mouse populations that the primary rate of retroposition is orders of magnitude higher than the long-term rate. Comparisons with single-nucleotide polymorphism distribution patterns in the same populations show that most retroposition events are deleterious. Transcriptomic profiling analysis shows that new retroposed copies become easily subject to transcription and have an influence on the expression levels of their parental genes, especially when transcribed in the antisense direction. Our results imply that the impact of retroposition on the mutational load has been highly underestimated in natural populations. This has additional implications for strategies of disease allele detection in humans.


Assuntos
Mutação/genética , Retroelementos/genética , Animais , Variações do Número de Cópias de DNA/genética , Regulação da Expressão Gênica , Genética Populacional , Geografia , Camundongos , Polimorfismo de Nucleotídeo Único/genética
20.
J Sci Food Agric ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785267

RESUMO

BACKGROUND: Qingzhuan dark tea polysaccharides (QDTP) have been complexed with Zinc (Zn) to form the Qingzhuan dark tea polysaccharides-Zinc (QDTP-Zn) complex. The present study investigated the protective effects of QDTP-Zn on ulcerative colitis (UC) in mice. The UC mouse model was induced using dextran sodium sulfate (DSS), followed by oral administration of QDTP-Zn (0.2 and 0.4 g kg-1 day-1). RESULTS: QDTP-Zn demonstrated alleviation of UC symptoms in mice, as evidenced by a decrease in disease activity index scores. QDTP-Zn also regulated colon tissue injury by upregulating ZO-1 and occludin protein expression, at the same time as downregulating tumor necrosis factor-α and interleukin-6ß levels. Furthermore, QDTP-Zn induced significant alterations in the abundance of bacteroidetes and firmicutes and notably increased levels of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, and butyric acid. CONCLUSION: In summary, QDTP-Zn exhibits therapeutic potential in alleviating enteritis by fortifying the colonic mucosal barrier, mitigating inflammation and modulating intestinal microbiota and SCFAs levels. Thus, QDTP-Zn holds promise as a functional food for both the prevention and treatment of UC. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA