Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Oral Health ; 24(1): 1091, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277722

RESUMO

BACKGROUND: Accurate assessment of basal bone width is essential for distinguishing individuals with normal occlusion from patients with maxillary transverse deficiency who may require maxillary expansion. Herein, we evaluated the effectiveness of a deep learning (DL) model in measuring landmarks of basal bone width and assessed the consistency of automated measurements compared to manual measurements. METHODS: Based on the U-Net algorithm, a coarse-to-fine DL model was developed and trained using 80 cone-beam computed tomography (CBCT) images. The model's prediction capabilities were validated on 10 CBCT scans and tested on an additional 34. To evaluate the performance of the DL model, its measurements were compared with those taken manually by one junior orthodontist using the concordance correlation coefficient (CCC). RESULTS: It took approximately 1.5 s for the DL model to perform the measurement task in only CBCT images. This framework showed a mean radial error of 1.22 ± 1.93 mm and achieved successful detection rates of 71.34%, 81.37%, 86.77%, and 91.18% in the 2.0-, 2.5-, 3.0-, and 4.0-mm ranges, respectively. The CCCs (95% confidence interval) of the maxillary basal bone width and mandibular basal bone width distance between the DL model and manual measurement for the 34 cases were 0.96 (0.94-0.97) and 0.98 (0.97-0.99), respectively. CONCLUSION: The novel DL framework developed in this study improved the diagnostic accuracy of the individual assessment of maxillary width. These results emphasize the potential applicability of this framework as a computer-aided diagnostic tool in orthodontic practice.


Assuntos
Pontos de Referência Anatômicos , Tomografia Computadorizada de Feixe Cônico , Maxila , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Estudos Retrospectivos , Pontos de Referência Anatômicos/diagnóstico por imagem , Maxila/diagnóstico por imagem , Feminino , Masculino , Aprendizado Profundo , Adolescente , Algoritmos , Adulto , Adulto Jovem
2.
J Transl Med ; 21(1): 339, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217897

RESUMO

BACKGROUND: Disruption of N6 methyl adenosine (m6A) modulation hampers gene expression and cellular functions, leading to various illnesses. However, the role of m6A modification in osteoarthritis (OA) synovitis remains unclear. This study aimed to explore the expression patterns of m6A regulators in OA synovial cell clusters and identify key m6A regulators that mediate synovial macrophage phenotypes. METHODS: The expression patterns of m6A regulators in the OA synovium were illustrated by analyzing bulk RNA-seq data. Next, we built an OA LASSO-Cox regression prediction model to identify the core m6A regulators. Potential target genes of these m6A regulators were identified by analyzing data from the RM2target database. A molecular functional network based on core m6A regulators and their target genes was constructed using the STRING database. Single-cell RNA-seq data were collected to verify the effects of m6A regulators on synovial cell clusters. Conjoint analyses of bulk and single-cell RNA-seq data were performed to validate the correlation between m6A regulators, synovial clusters, and disease conditions. After IGF2BP3 was screened as a potential modulator in OA macrophages, the IGF2BP3 expression level was tested in OA synovium and macrophages, and its functions were further tested by overexpression and knockdown in vitro. RESULTS: OA synovium showed aberrant expression patterns of m6A regulators. Based on these regulators, we constructed a well-fitting OA prediction model comprising six factors (FTO, YTHDC1, METTL5, IGF2BP3, ZC3H13, and HNRNPC). The functional network indicated that these factors were closely associated with OA synovial phenotypic alterations. Among these regulators, the m6A reader IGF2BP3 was identified as a potential macrophage mediator. Finally, IGF2BP3 upregulation was verified in the OA synovium, which promoted macrophage M1 polarization and inflammation. CONCLUSIONS: Our findings revealed the functions of m6A regulators in OA synovium and highlighted the association between IGF2BP3 and enhanced M1 polarization and inflammation in OA macrophages, providing novel molecular targets for OA diagnosis and treatment.


Assuntos
Osteoartrite , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Inflamação/metabolismo , Macrófagos/metabolismo , Osteoartrite/genética , Fenótipo , Membrana Sinovial/metabolismo
3.
Chemistry ; 29(66): e202301991, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37610944

RESUMO

Lithium (Li) metal anodes are drawing considerable attention owing to their ultrahigh theoretical capacities and low electrochemical reduction potentials. However, their commercialization has been hampered by safety hazards induced by continuous dendrite growth. These issues can be alleviated using the ZnO-modified 3D carbon-based host containing carbon nanotubes (CNTs) and carbon felt (CF) fabricated by electroplating in the present study (denoted as ZnO/CNT@CF). The constructed skeleton has lithiophilic ZnO that is gradationally distributed along its thickness. The utilization of an inverted ZnO/CNT@CF-Li anode obtained by flipping over the carbon skeleton after Li electrodeposition is also reported herein. The synergistic effect of the Li metal and lithiophilic sites reduces the nucleation overpotential, thus inducing Li+ to preferentially deposit inside the porous carbon-based scaffold. The composite electrode compels Li to grow away from the separator, thereby significantly improving battery safety. A symmetric cell with the inverted ZnO/CNT@CF-Li electrode operates steadily for 700 cycles at 1 mA cm-2 and 1 mAh cm-2 . Moreover, the ZnO/CNT@CF-Li|S cell exhibits an initial areal capacity of 10.9 mAh cm-2 at a S loading of 10.4 mg cm-2 and maintains a capacity of 3.0 mAh cm-2 after 320 cycles.

4.
Ann Rheum Dis ; 81(5): 676-686, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35058228

RESUMO

OBJECTIVES: To investigate the role of mechanical stress in cartilage ageing and identify the mechanistic association during osteoarthritis (OA) progression. METHODS: F-box and WD repeat domain containing 7 (FBXW7) ubiquitin ligase expression and chondrocyte senescence were examined in vitro, in experimental OA mice and in human OA cartilage. Mice with Fbxw7 knockout in chondrocytes were generated and adenovirus-expressing Fbxw7 (AAV-Fbxw7) was injected intra-articularly in mice. Destabilised medial meniscus surgery was performed to induce OA. Cartilage damage was measured using the Osteoarthritis Research Society International score and the changes in chondrocyte senescence were determined. mRNA sequencing was performed in articular cartilage from Fbxw7 knockout and control mice. RESULTS: Mechanical overloading accelerated senescence in cultured chondrocytes and in mice articular cartilage. FBXW7 was downregulated by mechanical overloading in primary chondrocytes and mice cartilage, and decreased in the cartilage of patients with OA, aged mice and OA mice. FBXW7 deletion in chondrocytes induced chondrocyte senescence and accelerated cartilage catabolism in mice, as manifested by an upregulation of p16INK4A, p21 and Colx and downregulation of Col2a1 and ACAN, which resulted in the exacerbation of OA. By contrast, intra-articular injection of adenovirus expressing Fbxw7 alleviated OA in mice. Mechanistically, mechanical overloading decreased Fbxw7 mRNA transcription and FBXW7-mediated MKK7 degradation, which consequently stimulated JNK signalling. In particular, inhibition of JNK activity by DTP3, a MKK7 inhibitor, ameliorated chondrocyte senescence and cartilage degeneration CONCLUSIONS: FBXW7 is a key factor in the association between mechanical overloading and chondrocyte senescence and cartilage ageing in the pathology of OA.


Assuntos
Cartilagem Articular , Proteína 7 com Repetições F-Box-WD/metabolismo , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Humanos , Camundongos , Osteoartrite/patologia , RNA Mensageiro/metabolismo
5.
Arch Phys Med Rehabil ; 103(3): 523-541, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34352269

RESUMO

OBJECTIVE: To systematically review and examine the current literature regarding the effects of virtual reality (VR)-based rehabilitation on neural plasticity changes in survivors of stroke. DATA SOURCES: We searched 6 bioscience and engineering databases, including Medline via EBSCO, Embase, PsycINFO, IEEE Explore, Cumulative Index of Nursing and Allied Health, and Scopus. STUDY SELECTION: We selected studies reporting on the pre-post assessment of a VR intervention with neural plasticity measures published between 2000 and 2021. DATA EXTRACTION: Two independent reviewers conducted study selection, data extraction, and quality assessment. They assessed methodological quality of controlled trials using the Physiotherapy Evidence Database scale and evaluated risk of bias of pre-post intervention and case studies using the National Institutes of Health Quality Assessment Tool. DATA SYNTHESIS: We included 27 studies (n=232). We rated 7 randomized-controlled trials as good quality and 2 clinical-controlled trials as moderate. Based on the risk of bias assessment, we graded 1 pre-post study and 1 case study as good quality, 1 pre-post study and 1 case study as poor, and the other 14 studies as fair. After the VR intervention, main neurophysiological findings across studies include: (1) improved interhemispheric balance; (2) enhanced cortical connectivity; (3) increased cortical mapping of the affected limb muscles; (4) the improved neural plasticity measures were correlated to the enhanced behavior outcomes; (5) increased activation of regions in frontal cortex; and (6) the mirror neuron system may be involved. CONCLUSIONS: VR-induced changes in neural plasticity for survivors of stroke. Positive correlations between the neural plasticity changes and functional recovery elucidates the mechanisms of VR-based therapeutic effects in stroke rehabilitation. This review prompts systematic understanding of the neurophysiological mechanisms of VR-based stroke rehabilitation and summarizes the emerging evidence for ongoing innovation of VR systems and application in stroke rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Terapia de Exposição à Realidade Virtual , Realidade Virtual , Humanos , Plasticidade Neuronal , Estados Unidos
6.
PeerJ ; 12: e18096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301058

RESUMO

A symmetric gait pattern in humans reflects near-identical movement in bilateral limbs during walking. However, little is known about how gait symmetry changes on different inclines. This study aimed to address this knowledge gap using the central pattern generator and internal model hypotheses. Eighteen healthy young adults underwent five 2-minute walking trials (inclines of +15%, +8%, 0%, -8%, and -15%). Dependent variables included step time, step length, step width, maximum heel clearance, time to peaks of maximum heel clearance, their corresponding coefficients of variation (CV), and respective symmetry indices (SI). Significant differences were observed in SI of step length (p = .022), step length variability (p < .001), step width variability (p =.001), maximum heel clearance (p < .001), and maximum heel clearance variability (p = .049). Compared to level walking, walking at -8% and -15% inclines increased SI of step length (p = .011, p = .039 respectively) but decreased SI of maximum heel clearance (p = .025, p = .019 respectively). These observations suggested that incline walking affected gait symmetry differently, possibly due to varied internal models used in locomotion. Downhill walking improved vertical gait symmetry but reduced anterior-posterior symmetry compared to level walking. Downhill walking may be a preferable rehabilitation protocol for enhancing gait symmetry, as it activates internal model controls. Even slight downhill inclines could increase active control loading, beneficial for the elderly and those with impaired gait.


Assuntos
Marcha , Caminhada , Humanos , Masculino , Caminhada/fisiologia , Marcha/fisiologia , Feminino , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Voluntários Saudáveis
7.
PLoS One ; 19(1): e0296743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285674

RESUMO

In recent years, the phenomenon of the urban heat island caused by the rapid development of cities is very serious. To solve the problem of the urban heat island, this study proposed a PPP project consisting of the government (GOVT), photovoltaic investment company (PVIC), and residential customers (RS). Based on an evolutionary game model and combined with current policies and industry regulations in China, the evolution process and stable evolution strategies were studied. The result shows that more government subsidies, higher carbon trading prices, and feed-in tariffs will promote the development of the PPP project. For relatively suitable reference value ranges, the installation tilt angle of the BAPV system is 30°, the photovoltaic grid electricity price is 0.1096∼0.1296 $/kWh, the carbon trading is 8.92∼9.42 $/t.


Assuntos
Carbono , Temperatura Alta , Cidades , China , Sistemas Computacionais
8.
PeerJ ; 12: e16919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390385

RESUMO

Background: Sensory-motor perturbations have been widely used to assess astronauts' balance in standing during pre-/post- spaceflight. However, balance control during walking, where most falls occur, was less studied in these astronauts. A study found that applying either visual or platform oscillations reduced the margin of stability (MOS) in the anterior-posterior direction (MOSap) but increased MOS in the medial-lateral direction (MOSml) as a tradeoff. This tradeoff induced an asymmetric gait. This study extended the current knowledge to investigate overall stability under unpredictable environments. This study aimed to determine (1) whether quasi-random treadmill perturbations with or without full vision support would result in a significant reduction in MOSap but an increase in MOSml and (2) regardless of whether vision support was provided, quasi-random treadmill perturbations might result in asymmetric gait patterns. Methods: Twenty healthy young adults participated in this study. Three experimental conditions were semi-randomly assigned to these participants as follows: (1) the control condition (Norm), walking normally with their preferred walking speed on the treadmill; (2) the treadmill perturbations with full vision condition (Slip), walking on the quasi-random varying-treadmill-belt-speeds with full vision support; and (3) the treadmill perturbations without full vision condition (Slip_VisionBlocked, blackout vision through customized vision-blocked goggles), walking on the quasi-random varying-treadmill-belt-speeds without full vision support. The dependent variables were MOSap, MOSml, and respective symmetric indices. A one-way repeated ANOVA measure or Friedman Test was applied to investigate the differences among the conditions mentioned above. Results: There was an increase in MOSap in Slip (p = 0.001) but a decrease in MOSap in Slip_VisionBlocked (p = 0.001) compared to Norm condition. The MOSml was significantly greater in both Slip and Slip_VisionBlocked conditions compared to the Norm condition (p = 0.011; p < 0.001). An analysis of Wilcoxon signed-rank tests revealed that the symmetric index of MOSml in Slip_VisionBlocked (p = 0.002) was greater than in the Norm condition. Conclusion: The novelty of this study was to investigate the effect of vision on the overall stability of walking under quasi-random treadmill perturbations. The results revealed that overall stability and symmetry were controlled differently with/without full visual support. In light of these findings, it is imperative to take visual support into consideration while developing a sensory-motor training protocol. Asymmetric gait also required extra attention while walking on the quasi-random treadmill perturbations without full vision support to maintain overall stability.


Assuntos
Acidentes por Quedas , Equilíbrio Postural , Adulto Jovem , Humanos , Caminhada , Marcha , Velocidade de Caminhada
9.
Gait Posture ; 114: 160-166, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39341102

RESUMO

BACKGROUND: The majority of research primarily examines the role of the vestibular system in regulating balance by assessing gait parameters in the transverse plane while neglecting those in the sagittal plane. The present study aimed to examine the impact of various forms of mastoid vibration (MV) on minimum toe clearance (MTC) and its pattern of variability. This study proposed two hypotheses: 1) the application of MV reduced the MTC, and 2) the application of different forms of MV influenced the amount and structure of MTC variability. METHODS: A total of twenty young adults participated in this study. A high-resolution motion capture system with eight cameras captured the minimum toe clearance. Three locomotor tasks were randomly assigned to these young participants: 1) walking normally on the treadmill, 2) walking with unilateral MV, and 3) walking with bilateral MV. The dependent variables were the mean of MTC, the amount, and the structure of MTC variability. The amount of MTC variability was calculated by the coefficient of variation represented, and the structure of MTC variability was measured using a sample entropy measure for a total of 200 MTCs. RESULTS: Applying unilateral and bilateral MV decreased the MTC significantly (-1.6 %, p = 0.038; -4.3 %, p < 0.001) compared to normal walking. Also, applying unilateral MV increased the amount (11.8 %, p = 0.001) and structure of MTC variability (14.3 %, p < 0.001) compared to normal walking. However, applying bilateral MV decreased the amount (-8.8 %, p = 0.001) and structure of MTC variability (-9.0 %, p < 0.001) compared to regular walking. CONCLUSION: Although the statistical differences in MTC and MTC variability were observed in the present study, the mean differences among the different MV conditions were relatively small, thereby requiring meticulous deliberation when extrapolating the results when implementing this MTC in the pathological cohort.

10.
ACS Appl Mater Interfaces ; 16(30): 39447-39459, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39016610

RESUMO

Li-rich Mn-based cathode materials (LLOs) are often faced with problems such as low initial Coulombic efficiency (ICE), limited rate performance, voltage decay, and structural instability. Addressing these problems with a single approach is challenging. To overcome these limitations, we developed an LLO with surface functionalization using a simple fabrication method. This two-step process involved a liquid-stage NaBF4 treatment followed by an in situ chemical reaction during sintering. This reaction led to the creation of oxygen vacancies (OV), spinel structures, and doping with Na at the Li site, B at the tetrahedral interstitial spaces of O in both the transition-metal (TM) layer and Li layers as well as the octahedral interstices in the TM layer, and F at the O site. We have carried out a thorough study and employed density functional theory calculations to reveal the hidden mechanisms. The treatment not only increases the electrical conductivity but also changes the oxygen charge environment and inhibits lattice oxygen activity. Surprisingly, the B-O bond is so strong that it prevents the migration of TM within the tetrahedral interstitial spaces of O in both the TM and Li layers, hence stabilizing its structure. This bonding interaction strengthens the transition of the TM 3d and O 2p states to lower energy levels, thus causing an increase in the redox potentials. Hence, a rise in the operating voltage occurs. Of special importance, this therapy dramatically increases the ICE to 90.29% and keeps a specified capacity of 203.3 mAh/g after 100 cycles at 1C, which is an excellent capacity retention of 89.94%. This study introduces ideas and methods to tackle the challenges associated with LLOs in batteries. It also provides compelling evidence for the development of high-energy-density Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA