Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.961
Filtrar
1.
Nature ; 627(8002): 157-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418877

RESUMO

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Assuntos
Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Neurônios , Potenciais de Ação , Encéfalo/citologia , Encéfalo/metabolismo , Ondas Encefálicas/fisiologia , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Rede Nervosa/fisiologia , Neurônios/metabolismo , Optogenética , Tecido Parenquimatoso/metabolismo , Íons/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(13): e2210796120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947513

RESUMO

Rewiring of redox metabolism has a profound impact on tumor development, but how the cellular heterogeneity of redox balance affects leukemogenesis remains unknown. To precisely characterize the dynamic change in redox metabolism in vivo, we developed a bright genetically encoded biosensor for H2O2 (named HyPerion) and tracked the redox state of leukemic cells in situ in a transgenic sensor mouse. A H2O2-low (HyPerion-low) subset of acute myeloid leukemia (AML) cells was enriched with leukemia-initiating cells, which were endowed with high colony-forming ability, potent drug resistance, endosteal rather than vascular localization, and short survival. Significantly high expression of malic enzymes, including ME1/3, accounted for nicotinamide adenine dinucleotide phosphate (NADPH) production and the subsequent low abundance of H2O2. Deletion of malic enzymes decreased the population size of leukemia-initiating cells and impaired their leukemogenic capacity and drug resistance. In summary, by establishing an in vivo redox monitoring tool at single-cell resolution, this work reveals a critical role of redox metabolism in leukemogenesis and a potential therapeutic target.


Assuntos
Peróxido de Hidrogênio , Leucemia Mieloide Aguda , Camundongos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oxirredução , Camundongos Transgênicos , Resistencia a Medicamentos Antineoplásicos/genética
3.
Am J Pathol ; 194(6): 989-1006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442803

RESUMO

Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of Fcna, but not Fcnb, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in Fcna knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, GSDMD knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas Fcn2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.


Assuntos
Armadilhas Extracelulares , Camundongos Knockout , Neutrófilos , Proteínas de Ligação a Fosfato , Piroptose , Armadilhas Extracelulares/metabolismo , Animais , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Humanos , Neutrófilos/metabolismo , Neutrófilos/patologia , Ficolinas , Lectinas/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Masculino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
4.
Plant Cell ; 34(2): 889-909, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850198

RESUMO

Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácidos Fosfatídicos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hipóxia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fenótipo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Am Chem Soc ; 146(4): 2494-2502, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38129761

RESUMO

Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement. Herein, we synthesized single-isomer C60- and C70-based diethylmalonate functionalized bisadducts (C60BB and C70BB) by utilizing the steric-hindrance-assisted strategy and determined all molecular structures involved by single crystal diffraction. Meanwhile, we found that the different solvents used for processing the fullerene bisadducts can effectively regulate the molecular packing in their films. The dense and amorphous fullerene bisadduct films prepared by using anisole exhibited the highest electron mobility. Finally, C60BB- and C70BB-based TPSCs showed impressive efficiencies up to 14.51 and 14.28%, respectively. These devices also exhibited excellent long-term stability. This work highlights the importance of developing strategies to synthesize single-isomer fullerene bisadducts and regulate their molecular packing to improve TPSCs' performance.

6.
J Hepatol ; 80(3): 454-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37952766

RESUMO

BACKGROUND & AIMS: Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1. METHODS: Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1. RESULTS: EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine. CONCLUSIONS: This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition. IMPACT AND IMPLICATIONS: Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.


Assuntos
Tirosinemias , Humanos , Camundongos , Animais , Tirosinemias/complicações , Tirosinemias/genética , Tirosinemias/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Camundongos Knockout , Tirosina/metabolismo , Escherichia coli/genética
7.
Apoptosis ; 29(5-6): 835-848, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573492

RESUMO

Oxaliplatin resistance poses a significant challenge in colorectal cancer (CRC) therapy, necessitating further investigation into the underlying molecular mechanisms. This study aimed to elucidate the regulatory role of SNHG4 in oxaliplatin resistance and ferroptosis in CRC. Our findings revealed that treatment with oxaliplatin led to downregulation of SNHG4 expression in CRC cells, while resistant CRC cells exhibited higher levels of SNHG4 compared to parental cells. Silencing SNHG4 attenuated oxaliplatin resistance and reduced the expression of resistance-related proteins MRD1 and MPR1. Furthermore, induction of ferroptosis effectively diminished oxaliplatin resistance in both parental and resistant CRC cells. Notably, ferroptosis induction resulted in decreased SNHG4 expression, whereas SNHG4 overexpression suppressed ferroptosis. Through FISH, RIP, and RNA pull-down assays, we identified the cytoplasmic localization of both SNHG4 and PTEN, establishing that SNHG4 directly targets PTEN, thereby reducing mRNA stability in CRC cells. Silencing PTEN abrogated the impact of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells. In vivo experiments further validated the influence of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells through PTEN regulation. In conclusion, SNHG4 promotes resistance to oxaliplatin in CRC cells by suppressing ferroptosis through instability of PTEN, thus serves as a target for patients with oxaliplatin-base chemoresistance.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Oxaliplatina , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Oxaliplatina/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino
8.
Small ; 20(13): e2308688, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946695

RESUMO

Lymph node metastasis (LNM) is a significant barrier to the prognosis of patients with gastric cancer (GC). Helicobacter pylori (H. pylori)-positive GC patients experience a higher rate of LNM than H. pylori-negative GC patients. However, the underlying mechanism remains unclear. Based on the findings of this study, H. pylori-positive GC patients have greater lymphangiogenesis and lymph node immunosuppression than H. pylori-negative GC patients. In addition, miR-1246 is overexpressed in the plasma small extracellular vesicles (sEVs) of H. pylori-positive GC patients, indicating a poor prognosis. Functionally, sEVs derived from GC cells infected with H. pylori deliver miR-1246 to lymphatic endothelial cells (LECs) and promote lymphangiogenesis and lymphatic remodeling. Mechanistically, miR-1246 suppresses GSK3ß expression and promotes ß-Catenin and downstream MMP7 expression in LECs. miR-1246 also stabilizes programmed death ligand-1 (PD-L1) by suppressing GSK3ß and induces the apoptosis of CD8+ T cells. Overall, miR-1246 in plasma sEVs may be a novel biomarker and therapeutic target in GC-LNM.


Assuntos
Vesículas Extracelulares , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Linfangiogênese , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glicogênio Sintase Quinase 3 beta , MicroRNAs/genética , Vesículas Extracelulares/metabolismo
9.
Small ; : e2310940, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700049

RESUMO

Graphene supported electrocatalysts have demonstrated remarkable catalytic performance for oxygen reduction reaction (ORR). However, their durability and cycling performance are greatly limited by Oswald ripening of platinum (Pt) and graphene support corrosion. Moreover, comprehensive studies on the mechanisms of catalysts degradation under 0.6-1.6 V versus RHE (Reversible Hydrogen Electrode) is still lacking. Herein, degradation mechanisms triggered by different defects on graphene supports are investigated by two cycling protocols. In the start-up/shutdown cycling (1.0-1.6 V vs. RHE), carbon oxidation reaction (COR) leads to shedding or swarm-like aggregation of Pt nanoparticles (NPs). Theoretical simulation results show that the expansion of vacancy defects promotes reaction kinetics of the decisive step in COR, reducing its reaction overpotential. While under the load cycling (0.6-1.0 V vs. RHE), oxygen containing defects lead to an elevated content of Pt in its oxidation state which intensifies Oswald ripening of Pt. The presence of vacancy defects can enhance the transfer of electrons from graphene to the Pt surface, reducing the d-band center of Pt and making it more difficult for the oxidation state of platinum to form in the cycling. This work will provide comprehensive understanding on Pt/Graphene catalysts degradation mechanisms.

10.
Planta ; 259(5): 104, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551672

RESUMO

MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.


Assuntos
MicroRNAs , Rhododendron , Transcriptoma/genética , Rhododendron/genética , Rhododendron/metabolismo , Ecossistema , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Perfilação da Expressão Gênica
11.
Plant Biotechnol J ; 22(3): 635-649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938892

RESUMO

Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.


Assuntos
Flores , Triticum , Triticum/metabolismo , Fotoperíodo , Melhoramento Vegetal , Vernalização , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
12.
Appl Environ Microbiol ; 90(2): e0204723, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38205997

RESUMO

The rapid degradation of short-chain fatty acids (SCFAs) is an essential issue of anaerobic digestion (AD), in which SCFA oxidizers could generally metabolize in syntrophy with methanogens. The dynamic responses of active metagenome-assembled genomes to low concentrations of propionate and acetate were analyzed to identify specific syntrophic SCFA oxidizers and their metabolic characteristics in continuous-flow AD systems treating waste activated sludge with and without hydrochar. In this study, hydrochar increased methane production by 19%, possibly due to hydrochar enhancing acidification and methanogenesis processes. A putative syntrophic propionate oxidizer and two acetate oxidizers contributed substantially to the syntrophic degradation of SCFAs, and hydrochar positively regulated their functional gene expressions. A significant relationship was established between the replication rate of SCFA oxidizers and their stimulation-related transcriptional activity. Acetate was degraded in the hydrochar group, which might be mainly through the syntrophic acetate oxidizer from the genus Desulfallas and methanogens from the genus Methanosarcina.IMPORTANCEShort-chain fatty acid (SCFA) degradation is an important process in the methanogenic ecosystem. However, current knowledge of this microbial mechanism is mainly based on studies on a few model organisms incubated as mono- or co-cultures or in enrichments, which cannot provide appropriate evidence in complex environments. Here, this study revealed the microbial mechanism of a hydrochar-mediated anaerobic digestion (AD) system promoting SCFA degradation at the species level and identified key SCFA oxidizing bacteria. Our analysis provided new insights into the SCFA oxidizers involved in the AD of waste activated sludge facilitated by hydrochar.


Assuntos
Propionatos , Esgotos , Esgotos/microbiologia , Anaerobiose , Ecossistema , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis , Acetatos/metabolismo , Oxirredução , Metano/metabolismo
13.
New Phytol ; 241(1): 343-362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858933

RESUMO

Most plant reoviruses are phloem-limited, but the mechanism has remained unknown for more than half a century. Southern rice black-streaked dwarf virus (Fijivirus, Reoviridae) causes phloem-derived tumors, where its virions, genomes, and proteins accumulate, and it was used as a model to explore how its host plant limits the virus within its phloem. High-throughput volume electron microscopy revealed that only sieve plate pores and flexible gateways rather than plasmodesmata had a sufficiently large size exclusion limit (SEL) to accommodate virions and potentially serve as pathways of virion movement. The large SEL gateways were enriched within the proliferated sieve element (SE) layers of tumors. The lack of such connections out of the SE-enriched regions of tumors defined a size-dependent physical barrier to high flux transportation of virions. A working model is proposed to demonstrate the mechanism underlying limitation of virus within phloem.


Assuntos
Neoplasias , Microscopia Eletrônica de Volume , Floema/metabolismo , Neoplasias/metabolismo
14.
Blood ; 139(10): 1529-1540, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-34929029

RESUMO

Bone marrow niche cells have been reported to fine-tune hematopoietic stem cell (HSC) stemness via direct interaction or secreted components. Nevertheless, how niche cells control HSC activities remains largely unknown. We previously showed that angiopoietin-like protein 2 (ANGPTL2) can support the ex vivo expansion of HSCs by binding to human leukocyte immunoglobulin-like receptor B2. However, how ANGPTL2 from specific niche cell types regulates HSC activities under physiological conditions is still not clear. Herein, we generated an Angptl2-flox/flox transgenic mouse line and conditionally deleted Angptl2 expression in several niche cells, including Cdh5+ or Tie2+ endothelial cells, Prx1+ mesenchymal stem cells, and Pf4+ megakaryocytes, to evaluate its role in the regulation of HSC fate. Interestingly, we demonstrated that only endothelial cell-derived ANGPTL2 and not ANGPTL2 from other niche cell types plays important roles in supporting repopulation capacity, quiescent status, and niche localization. Mechanistically, ANGPTL2 enhances peroxisome-proliferator-activated receptor D (PPARD) expression to transactivate G0s2 to sustain the perinuclear localization of nucleolin to prevent HSCs from entering the cell cycle. These findings reveal that endothelial cell-derived ANGPTL2 serves as a critical niche component to maintain HSC stemness, which may benefit the understanding of stem cell biology in bone marrow niches and the development of a unique strategy for the ex vivo expansion of HSCs.


Assuntos
Proteína 2 Semelhante a Angiopoietina/metabolismo , Medula Óssea , Animais , Medula Óssea/metabolismo , Células da Medula Óssea , Células Endoteliais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Nicho de Células-Tronco
15.
Blood ; 140(19): 2063-2075, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040436

RESUMO

Studies have shown significantly increased thromboembolic events at high altitude. We recently reported that transferrin could potentiate blood coagulation, but the underlying mechanism for high altitude-related thromboembolism is still poorly understood. Here, we examined the activity and concentration of plasma coagulation factors and transferrin in plasma collected from long-term human residents and short-stay mice exposed to varying altitudes. We found that the activities of thrombin and factor XIIa (FXIIa) along with the concentrations of transferrin were significantly increased in the plasma of humans and mice at high altitudes. Furthermore, both hypoxia (6% O2) and low temperature (0°C), 2 critical high-altitude factors, enhanced hypoxia-inducible factor 1α (HIF-1α) levels to promote the expression of the transferrin gene, whose enhancer region contains HIF-1α binding site, and consequently, to induce hypercoagulability by potentiating thrombin and FXIIa. Importantly, thromboembolic disorders and pathological insults in mouse models induced by both hypoxia and low temperature were ameliorated by transferrin interferences, including transferrin antibody treatment, transferrin downregulation, and the administration of our designed peptides that inhibit the potentiation of transferrin on thrombin and FXIIa. Thus, low temperature and hypoxia upregulated transferrin expression-promoted hypercoagulability. Our data suggest that targeting the transferrin-coagulation pathway is a novel and potentially powerful strategy against thromboembolic events caused by harmful environmental factors under high-altitude conditions.


Assuntos
Altitude , Trombofilia , Camundongos , Humanos , Animais , Transferrina/genética , Trombina/metabolismo , Temperatura , Hipóxia/metabolismo , Trombofilia/etiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
16.
Cancer Cell Int ; 24(1): 55, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311725

RESUMO

BACKGROUND: Emerging data point to the critical role of snoRNA in the emergence of different types of cancer, but scarcely in breast cancer (BC). This study aimed to clarify the differential expressions and potential diagnostic value of SNORD16, SNORA73B, SCARNA4, and SNORD49B in BC. METHODS: We screened differential snoRNAs in BC tissues and adjacent tissues through SNORic datasets, and then we further verified them in the plasma of BC patients and healthy volunteers by quantitative polymerase chain reaction (qPCR). RESULTS: These four snoRNAs: SNORD16, SNORA73B, SCARNA4, and SNORD49B were considerably more abundant in cancerous tissues than in neighboring tissues in the TCGA database. Their plasma levels were also higher in BC and early-stage BC patients when compared to healthy controls. Furthermore, the ROC curve demonstrated that BC (AUC = 0.7521) and early-stage BC (AUC = 0.7305) might be successfully distinguished from healthy people by SNORD16, SNORA73B, SCARNA4, and SNORD49B. CONCLUSION: Plasma snoRNAs: SNORD16, SNORA73B, SCARNA4, and SNORD49B were upregulated in BC and early-stage BC and can be used as potential diagnostic markers for BC and early-stage BC.

17.
Cancer Cell Int ; 24(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167096

RESUMO

PURPOSE: The alterations of RNA profile in tumor-educated platelets (TEPs) have been described as a novel biosource for cancer diagnostics. This study aimed to explore the potential snoRNAs in TEP as biomarkers for diagnostics of hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC). METHODS: Platelets were isolated using low-speed centrifugation and subjected to a quantitative polymerase chain reaction (qPCR) for snoRNAs detection. RESULTS: Down-regulated SNORD12B and SNORD14E as well as up-regulated SNORA63 were identified in TEP from HBV-related HCC, which could act as diagnostic biomarkers for HBV-related HCC as well as the early disease. Besides, TEP SNORD12B, SNORD14E, and SNORA63 facilitate the diagnostic performance of AFP and achieve favorable diagnostics efficiency for HBV-related HCC when combined with platelet parameters. CONCLUSIONS: Aberrant expression of SNORD12B, SNORA63, and SNORD14E in TEPs could serve as the novel and non-invasive biomarkers for HBV-related HCC diagnosis.

18.
Arch Microbiol ; 206(5): 232, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658486

RESUMO

Ibuprofen (IBU) and naproxen (NPX), as widely prescribed non-steroidal anti-inflammatory drugs (NSAIDs), are largely produced and consumed globally, leading to frequent and ubiquitous detection in various aqueous environments. Previously, the microbial transformation of them has been given a little attention, especially with the isolated fungus. A yeast-like Apiotrichum sp. IB-1 has been isolated and identified, which could simultaneously transform IBU (5 mg/L) and NPX (2.5 mg/L) with maximum efficiencies of 95.77% and 88.31%, respectively. For mono-substrate, the transformation efficiency of IB-1 was comparable to that of co-removal conditions, higher than most of isolates so far. IBU was oxidized mainly through hydroxylation (m/z of 221, 253) and NPX was detoxified mainly via demethylation (m/z of 215) as shown by UPLC-MS/MS results. Based on transcriptome analysis, the addition of IBU stimulated the basic metabolism like TCA cycle. The transporters and respiration related genes were also up-regulated accompanied with higher expression of several dehydrogenase, carboxylesterase, dioxygenase and oxidoreductase encoding genes, which may be involved in the transformation of IBU. The main functional genes responsible for IBU and NPX transformation for IB-1 should be similar in view of previous studies, which needs further confirmation. This fungus would be useful for potential bioremediation of NSAIDs pollution and accelerate the discovery of functional oxidative genes and enzymes different from those of bacteria.


Assuntos
Anti-Inflamatórios não Esteroides , Biotransformação , Ibuprofeno , Naproxeno , Ibuprofeno/metabolismo , Naproxeno/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Biodegradação Ambiental
19.
Pediatr Res ; 95(3): 843-851, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37857845

RESUMO

BACKGROUND: Studies on mNGS application in pediatric oncology patients, who are at high risk of infection, are quite limited. METHODS: From March 2020 to June 2022, a total of 224 blood samples from 195 pediatric oncology patients who were suspected as bloodstream infections were enrolled in this study. Their clinical and laboratory data were retrospectively reviewed, and the diagnostic performance of mNGS was assessed. RESULTS: Compared to the reference tests, mNGS showed significantly higher sensitivity (89.8% vs 32.5%, P < 0.001) and clinical agreement (76.3% vs 51.3%, P < 0.001) in detecting potential pathogens and distinguishing BSI from non-BSI. Especially, mNGS had an outstanding performance for virus detection, contributing to 100% clinical diagnosed virus. Samples from patients with neutropenia showed higher incidence of bacterial infections (P = 0.035). The most identified bacteria were Escherichia coli, and the overall infections by gram-negative bacteria were significantly more prevalent than those by gram-positive ones (90% vs 10%, P < 0.001). Overall, mNGS had an impact on the antimicrobial regimens' usage in 54.3% of the samples in this study. CONCLUSIONS: mNGS has the advantage of rapid and effective pathogen diagnosis in pediatric oncology patients with suspected BSI, especially for virus. IMPACT: Compared with reference tests, mNGS showed significantly higher sensitivity and clinical agreement in detecting potential pathogens and distinguishing bloodstream infections (BSI) from non-BSI. mNGS is particularly prominent in clinical diagnosed virus detection. The incidence of bacterial infection was higher in patients with neutropenia, and the overall infection rate of Gram-negative bacteria was significantly higher than that of Gram-positive bacteria. mNGS affects the antimicrobial regimens' usage in more than half of patients.


Assuntos
Anti-Infecciosos , Neoplasias , Neutropenia , Sepse , Criança , Humanos , Estudos Retrospectivos , Sepse/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Neutropenia/diagnóstico , Escherichia coli , Neoplasias/complicações , Neoplasias/diagnóstico , Sensibilidade e Especificidade
20.
PLoS Comput Biol ; 19(8): e1010974, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37590332

RESUMO

Proteolysis-targeting chimeras (PROTACs) are hetero-bifunctional molecules that induce the degradation of target proteins by recruiting an E3 ligase. PROTACs have the potential to inactivate disease-related genes that are considered undruggable by small molecules, making them a promising therapy for the treatment of incurable diseases. However, only a few hundred proteins have been experimentally tested for their amenability to PROTACs, and it remains unclear which other proteins in the entire human genome can be targeted by PROTACs. In this study, we have developed PrePROTAC, an interpretable machine learning model based on a transformer-based protein sequence descriptor and random forest classification. PrePROTAC predicts genome-wide targets that can be degraded by CRBN, one of the E3 ligases. In the benchmark studies, PrePROTAC achieved a ROC-AUC of 0.81, an average precision of 0.84, and over 40% sensitivity at a false positive rate of 0.05. When evaluated by an external test set which comprised proteins from different structural folds than those in the training set, the performance of PrePROTAC did not drop significantly, indicating its generalizability. Furthermore, we developed an embedding SHapley Additive exPlanations (eSHAP) method, which extends conventional SHAP analysis for original features to an embedding space through in silico mutagenesis. This method allowed us to identify key residues in the protein structure that play critical roles in PROTAC activity. The identified key residues were consistent with existing knowledge. Using PrePROTAC, we identified over 600 novel understudied proteins that are potentially degradable by CRBN and proposed PROTAC compounds for three novel drug targets associated with Alzheimer's disease.


Assuntos
Doença de Alzheimer , Ubiquitina-Proteína Ligases , Humanos , Sequência de Aminoácidos , Genoma Humano , Aprendizado de Máquina , Quimera de Direcionamento de Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA