Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(4): 2726-2740, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38307838

RESUMO

A facile and efficient approach for the synthesis of multisubstituted tetrahydropyridazines starting from cyclopropyl ketones and hydrazines has been developed. The transformation is chalcone-based and takes place via a Cloke-Wilson-type rearrangement-involved tandem reaction catalyzed by TfOH in HFIP.

2.
Eur J Med Chem ; 277: 116726, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39116535

RESUMO

Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 µM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.


Assuntos
Antineoplásicos , Proliferação de Células , Cumarínicos , Ensaios de Seleção de Medicamentos Antitumorais , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/síntese química
3.
Eur J Med Chem ; 251: 115243, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921527

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) plays a crucial role in DNA damage repair and has been identified as a promising therapeutic target in cancer therapy. As a continuation of our efforts on the development of novel PARP-1 inhibitors with potent anticancer activity, a series of benzamide derivatives containing the benzamidophenyl and phenylacetamidophenyl scaffolds were designed and synthesized based on the structure optimization of our previously reported compound IX. All target compounds were screened for their in vitro antiproliferative activities against human colorectal cancer cells (HCT116, DLD-1 and SW480) and human normal colonic epithelial cells (NCM460). Among them, compound 13f exhibited the most potent anticancer activity against HCT116 cells and DLD-1 cells with IC50 = 0.30 µM and 2.83 µM, respectively. Moreover, 13f displayed significant selectivity in inhibiting HCT116 cancer cells over the normal NCM460 cells. Furthermore, 13f exhibited excellent PARP-1 inhibitory effect with IC50 = 0.25 nM. Besides, 13f was found to effectively inhibit colony formation and migration of HCT116 cells. Studies on the mechanisms revealed that 13f could arrest cell cycle at G2/M phase, accumulate DNA double-strand breaks, reduce mitochondrial membrane potential and ultimately induce apoptosis in HCT116 cells. In addition, molecular docking study indicated that 13f could combine firmly with the catalytic pocket of PARP-1 through multiple hydrogen bond interactions. Collectively, these findings demonstrated that 13f could serve as a promising anticancer candidate and deserves further investigation.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antineoplásicos/química , Divisão Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Estrutura Molecular
4.
Eur J Med Chem ; 243: 114790, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36183505

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is one of the key members of DNA repair enzymes that is responsible for the repair of DNA single-strand breaks. Inhibition of PARP-1 has been demonstrated to be a promising strategy to selectively kill tumor cells by targeting DNA repair pathway. Herein, a series of novel urea-based benzamide derivatives were designed and synthesized based on the structure-based drug design strategy. The anticancer activities against five human cancer cell lines including HCT116, MDA-MB-231, HeLa, A579 and A375 were evaluated and the preliminary structure-activity relationships were summarized. Among them, compounds 23f and 27f exhibited potent antiproliferative effects against HCT116 cells with IC50 values of 7.87 µM and 8.93 µM, respectively. Moreover, both compounds displayed excellent PARP-1 inhibitory activities with IC50 values of 5.17 nM and 6.06 nM, respectively. Mechanistic investigations showed that 23f and 27f could effectively inhibit colony formation and cell migration of HCT116 cells. Furthermore, 23f and 27f could cause cell cycle arrest at G2/M phase, and induce apoptosis by upregulating the expression of Bax and cleaved Caspase-3 and downregulating the expression of Caspase-3 and Bcl-2 in HCT116 cells. In addition, molecular docking studies provided the rational binding modes of these compounds in complex with PARP-1. Collectively, these results suggested that 23f and 27f could serve as promising drug candidates for further investigation.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/química , Simulação de Acoplamento Molecular , Caspase 3/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ureia/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/química , Proliferação de Células , Poli(ADP-Ribose) Polimerase-1 , Relação Estrutura-Atividade , Benzamidas/farmacologia
5.
Carbohydr Polym ; 229: 115478, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826440

RESUMO

The clinical use of many chemotherapeutic drugs is considerably greatly limited due to their serious side effects. This problem can be solved by using a low-toxic or nontoxic drug carrier that exhibits excellent performance in entrapping chemotherapeutic drugs. Accordingly, ß-cyclodextrin-PEG-guanosine (ß-CD-PEG-G) molecule was first synthesized. The molecules can self-assemble into negatively charged spherical aggregates (called ß-CD-PEG-G aggregates) that can stably exist in an aqueous solution and entrap doxorubicin (Dox) to form ß-CD-PEG-G-Dox nanomedicine. Dox encapsulation efficiency is approximately 79 ± 6.3%. Dox from ß-CD-PEG-G-Dox nanomedicine exhibits sustained release and pH responsiveness. Cell and animal experiments showed that ß-CD-PEG-G-Dox nanomedicine could effectively induce cancer cell apoptosis to exert antitumor activity. Unexpectively, the animal experiment and tissue sections demonstrated that ß-CD-PEG-G aggregates exhibit certain antitumor activity that could delay the tumor growth. Therefore, the ß-CD-PEG-G molecule has high potential as a drug carrier candidate.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Guanosina/química , Polietilenoglicóis/química , beta-Ciclodextrinas/química , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Doxorrubicina/química , Doxorrubicina/farmacologia , Células Hep G2 , Humanos
6.
ACS Appl Bio Mater ; 3(9): 6237-6250, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021756

RESUMO

A biotin-HSA-DDA-TCPP molecule, which can be used as a photodynamic therapeutic agent and drug carrier, was synthesized. The molecule can self-assemble into spherical aggregates, which can be loaded with Dox to form biotin-HSA-DDA-TCPP-Dox nanoparticles in aqueous solution, and the Dox loading efficiency was 86.6 ± 1.76%. The Dox's release behavior was pH responsive and has a sustained release. Cell experiments showed that biotin-HSA-DDA-TCPP-Dox nanoparticles could effectively induce cancer cell apoptosis to exert anticancer and photodynamic therapy effects. The results of animal experiments, tissue sections, and blood biochemistry tests showed that the biotin-HSA-DDA-TCPP-Dox nanoparticles could exert the effect of photodynamic therapy and antitumor, which is similar to Dox after laser irradiation, and achieve a synergistic antitumor effect. The nanoparticles can significantly reduce the Dox toxicity and increase the circulation time of the drug in the body. In summary, the biotin-HSA-DDA-TCPP molecule, which combines the advantages of photodynamic therapy and drug carrier, has great potential in clinical application.

7.
Sci Rep ; 9(1): 13670, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541178

RESUMO

ß-CD-DPPE molecule was synthesized through the conjugation of ß-CD-NH2 and the DPPE molecule, and its' water-solubility was more excellent than the traditional phospholipid molecule. The spherical micelles was formed by ß-CD-DPPE molecule in aqueous solution, and the ß-CD-DPPE-Dox nanomedicine can be prepared through loading Dox (Doxorubicin) into the micelles, and the Dox loading ratio was about 82.3 ± 7.27%. At the same time the Dox release behavior from the nanomedicine was sustained-release and pH controlled release, and the release test in vitro showed that the release rate of the Dox at the lower pH was faster than that of normal pH (pH = 7.4), which indicated that the rate of release in the tumor microenvironment is faster than in the normal tissue. Biological test showed that the micelles was low cytotoxicity, and the cytotoxicity of ß-CD-DPPE-Dox nanomedicine was lower than the Dox under the same Dox concentration, and the ß-CD-DPPE-Dox nanomedicine could effectively induce cancer cell apoptosis and inhibit the tumor growth.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Compostos Organofosforados/química , beta-Ciclodextrinas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Micelas , Nanopartículas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nanomedicine (Lond) ; 13(21): 2777-2789, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30247090

RESUMO

AIM: The ß-CD-LPC molecule was synthesized based on the conjugation of LPC and ß-CD molecules and it could self-assemble into liposome which was used to encapsulate the Dox to form nanomedicine for the cancer therapy. MATERIALS & METHODS: The anticancer and antitumor effect of ß-CD-LPC-Dox nanomedicine was studied with the vitro and vivo experimental methods. RESULTS: The result showed that ß-CD-LPC liposome had high Dox drug-loading rate and a good sustained-release effect. Cell experiment showed that the ß-CD-LPC-Dox nanomedicine could effectively induce cancer cell apoptosis and in vivo experiments showed that ß-CD-LPC-Dox liposome could effectively inhibit tumor growth and had an effective anticancer activity with lower biotoxicity. CONCLUSION: The ß-CD-LPC-Dox nanomedicine could be applied as a candidate drug to therapy the cancer.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , beta-Ciclodextrinas/química , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Células Hep G2 , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Células MCF-7 , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Ciclodextrinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA