Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Plant Cell ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593056

RESUMO

Little is known about the factors regulating carotenoid biosynthesis in roots. In this study, we characterized DCAR_032551, the candidate gene of the Y locus responsible for the transition of root color from ancestral white to yellow during carrot (Daucus carota) domestication. We show that DCAR_032551 encodes a REPRESSOR OF PHOTOSYNTHETIC GENES (RPGE) protein, named DcRPGE1. DcRPGE1 from wild carrot (DcRPGE1W) is a repressor of carotenoid biosynthesis. Specifically, DcRPGE1W physically interacts with DcAPRR2, an ARABIDOPSIS PSEUDO-RESPONSE REGULATOR2 (APRR2)-like transcription factor. Through this interaction, DcRPGE1W suppresses DcAPRR2-mediated transcriptional activation of the key carotenogenic genes phytoene synthase 1 (DcPSY1), DcPSY2, and lycopene ε-cyclase (DcLCYE), which strongly decreases carotenoid biosynthesis. We also demonstrate that the DcRPGE1W-DcAPRR2 interaction prevents DcAPRR2 from binding to the RGATTY elements in the promoter regions of DcPSY1, DcPSY2, and DcLCYE. Additionally, we identified a mutation in the DcRPGE1 coding region of yellow and orange carrots that leads to the generation of alternatively spliced transcripts encoding truncated DcRPGE1 proteins unable to interact with DcAPRR2, thereby failing to suppress carotenoid biosynthesis. These findings provide insights into the transcriptional regulation of carotenoid biosynthesis and offer potential target genes for enhancing carotenoid accumulation in crop plants.

2.
Plant J ; 117(4): 1069-1083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947285

RESUMO

The color of purple carrot taproots mainly depends on the anthocyanins sequestered in the vacuoles. Glutathione S-transferases (GSTs) are key enzymes involved in anthocyanin transport. However, the precise mechanism of anthocyanin transport from the cytosolic surface of the endoplasmic reticulum (ER) to the vacuoles in carrots remains unclear. In this study, we conducted a comprehensive analysis of the carrot genome, leading to the identification of a total of 41 DcGST genes. Among these, DcGST1 emerged as a prominent candidate, displaying a strong positive correlation with anthocyanin pigmentation in carrot taproots. It was highly expressed in the purple taproot tissues of purple carrot cultivars, while it was virtually inactive in the non-purple taproot tissues of purple and non-purple carrot cultivars. DcGST1, a homolog of Arabidopsis thaliana TRANSPARENT TESTA 19 (TT19), belongs to the GSTF clade and plays a crucial role in anthocyanin transport. Using the CRISPR/Cas9 system, we successfully knocked out DcGST1 in the solid purple carrot cultivar 'Deep Purple' ('DPP'), resulting in carrots with orange taproots. Additionally, DcMYB7, an anthocyanin activator, binds to the DcGST1 promoter, activating its expression. Compared with the expression DcMYB7 alone, co-expression of DcGST1 and DcMYB7 significantly increased anthocyanin accumulation in carrot calli. However, overexpression of DcGST1 in the two purple carrot cultivars did not change the anthocyanin accumulation pattern or significantly increase the anthocyanin content. These findings improve our understanding of anthocyanin transport mechanisms in plants, providing a molecular foundation for improving and enhancing carrot germplasm.


Assuntos
Antocianinas , Daucus carota , Antocianinas/metabolismo , Daucus carota/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética
3.
Plant J ; 118(5): 1312-1326, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319894

RESUMO

Lignin is an important component of plant cell walls and plays crucial roles in the essential agronomic traits of tea quality and tenderness. However, the molecular mechanisms underlying the regulation of lignin biosynthesis in tea plants remain unclear. CsWRKY13 acts as a negative regulator of lignin biosynthesis in tea plants. In this study, we identified a GRAS transcription factor, phytochrome A signal transduction 1 (CsPAT1), that interacts with CsWRKY13. Silencing CsPAT1 expression in tea plants and heterologous overexpression in Arabidopsis demonstrated that CsPAT1 positively regulates lignin accumulation. Further investigation revealed that CsWRKY13 directly binds to the promoters of CsPAL and CsC4H and suppresses transcription of CsPAL and CsC4H. CsPAT1 indirectly affects the promoter activities of CsPAL and CsC4H by interacting with CsWRKY13, thereby facilitating lignin biosynthesis in tea plants. Compared with the expression of CsWRKY13 alone, the co-expression of CsPAT1 and CsWRKY13 in Oryza sativa significantly increased lignin biosynthesis. Conversely, compared with the expression of CsPAT1 alone, the co-expression of CsPAT1 and CsWRKY13 in O. sativa significantly reduced lignin accumulation. These results demonstrated the antagonistic regulation of the lignin biosynthesis pathway by CsPAT1 and CsWRKY13. These findings improve our understanding of lignin biosynthesis mechanisms in tea plants and provide insights into the role of the GRAS transcription factor family in lignin accumulation.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Lignina , Proteínas de Plantas , Fatores de Transcrição , Lignina/metabolismo , Lignina/biossíntese , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética
4.
Plant J ; 118(3): 717-730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213282

RESUMO

Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.


Assuntos
Antocianinas , Apiaceae , Genoma de Planta , Genômica , Antocianinas/biossíntese , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta/genética , Apiaceae/genética , Apiaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomos de Plantas/genética
5.
Plant Physiol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046113

RESUMO

Many organisms have complex pigmentation patterns. However, how these patterns are formed remains largely unknown. In wild carrot (Daucus carota subsp. carota), which is also known as Queen Anne's lace, one or several purple central flowers occur in white umbels. Here, we investigated the unique central flower pigmentation pattern in wild carrot umbels. Using wild and cultivated carrot (Daucus carota subsp. sativus L.) accessions, transcriptome analysis, protein interaction, stable transformation, and CRISPR/Cas9-mediated knockout, a anthocyanin-activating R2R3-myeloblastosis (MYB) gene, Purple Central Flower (DcPCF), was identified as the causal gene that triggers only central flowers to possess the purple phenotype. The expression of DcPCF was only detected in tiny central flowers. We propose that the transition from purple to nonpurple flowers in the center of the umbel occurred after three separate adverse events: insertion of transposons in the promoter region, premature termination of the coding sequence (caused by a C-T substitution in the open reading frame), and the emergence of unknown anthocyanin suppressors. These three events could have occurred either consecutively or independently. The intriguing purple central flower pattern and its underlying mechanism may provide evidence that it is a remnant of ancient conditions of the species, reflecting the original appearance of Umbelliferae (also called Apiaceae) when a single flower was present.

6.
Plant J ; 115(4): 986-1003, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158657

RESUMO

The accumulation of carotenoids, such as xanthophylls, lycopene, and carotenes, is responsible for the color of carrot (Daucus carota subsp. sativus) fleshy roots. The potential role of DcLCYE, encoding a lycopene ε-cyclase associated with carrot root color, was investigated using cultivars with orange and red roots. The expression of DcLCYE in red carrot varieties was significantly lower than that in orange carrots at the mature stage. Furthermore, red carrots accumulated larger amounts of lycopene and lower levels of α-carotene. Sequence comparison and prokaryotic expression analysis revealed that amino acid differences in red carrots did not affect the cyclization function of DcLCYE. Analysis of the catalytic activity of DcLCYE revealed that it mainly formed ε-carotene, while a side activity on α-carotene and γ-carotene was also observed. Comparative analysis of the promoter region sequences indicated that differences in the promoter region may affect the transcription of DcLCYE. DcLCYE was overexpressed in the red carrot 'Benhongjinshi' under the control of the CaMV35S promoter. Lycopene in transgenic carrot roots was cyclized, resulting in the accumulation of higher levels of α-carotene and xanthophylls, while the ß-carotene content was significantly decreased. The expression levels of other genes in the carotenoid pathway were simultaneously upregulated. Knockout of DcLCYE in the orange carrot 'Kurodagosun' by CRISPR/Cas9 technology resulted in a decrease in the α-carotene and xanthophyll contents. The relative expression levels of DcPSY1, DcPSY2, and DcCHXE were sharply increased in DcLCYE knockout mutants. The results of this study provide insights into the function of DcLCYE in carrots, which could serve as a basis for creating colorful carrot germplasms.


Assuntos
Daucus carota , beta Caroteno , beta Caroteno/metabolismo , Daucus carota/genética , Licopeno/metabolismo , Carotenoides/metabolismo , Xantofilas/metabolismo
7.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664694

RESUMO

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Assuntos
Camellia sinensis , Ritmo Circadiano , Fotossíntese , Fotossíntese/genética , Camellia sinensis/genética , Camellia sinensis/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Família Multigênica , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Fotoperíodo
8.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203827

RESUMO

The circadian clock refers to the formation of a certain rule in the long-term evolution of an organism, which is an invisible 'clock' in the body of an organism. As one of the largest TF families in higher plants, the MYB transcription factor is involved in plant growth and development. MYB is also inextricably correlated with the circadian rhythm. In this study, the transcriptome data of the tea plant 'Baiyeyihao' were measured at a photoperiod interval of 4 h (24 h). A total of 25,306 unigenes were obtained, including 14,615 unigenes that were annotated across 20 functional categories within the GO classification. Additionally, 10,443 single-gene clusters were annotated to 11 sublevels of metabolic pathways using KEGG. Based on the results of gene annotation and differential gene transcript analysis, 22 genes encoding MYB transcription factors were identified. The G10 group in the phylogenetic tree had 13 members, of which 5 were related to the circadian rhythm, accounting for 39%. The G1, G2, G8, G9, G15, G16, G18, G19, G20, G21 and G23 groups had no members associated with the circadian rhythm. Among the 22 differentially expressed MYB transcription factors, 3 members of LHY, RVE1 and RVE8 were core circadian rhythm genes belonging to the G10, G12 and G10 groups, respectively. Real-time fluorescence quantitative PCR was used to detect and validate the expression of the gene transcripts encoding MYB transcription factors associated with the circadian rhythm.


Assuntos
Camellia sinensis , Relógios Circadianos , Humanos , Camellia sinensis/genética , Filogenia , Ritmo Circadiano/genética , Chá
9.
BMC Plant Biol ; 23(1): 402, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620775

RESUMO

BACKGROUND: Betalain is a natural pigment with important nutritional value and broad application prospects. Previously, we produced betanin biosynthesis transgenic carrots via expressing optimized genes CYP76AD1S, cDOPA5GTS and DODA1S. Betanin can accumulate throughout the whole transgenic carrots. But the effects of betanin accumulation on the metabolism of transgenic plants and whether it produces unexpected effects are still unclear. RESULTS: The accumulation of betanin in leaves can significantly improve its antioxidant capacity and induce a decrease of chlorophyll content. Transcriptome and metabolomics analysis showed that 14.0% of genes and 33.1% of metabolites were significantly different, and metabolic pathways related to photosynthesis and tyrosine metabolism were markedly altered. Combined analysis showed that phenylpropane biosynthesis pathway significantly enriched the differentially expressed genes and significantly altered metabolites. CONCLUSIONS: Results showed that the metabolic status was significantly altered between transgenic and non-transgenic carrots, especially the photosynthesis and tyrosine metabolism. The extra consumption of tyrosine and accumulation of betanin might be the leading causes.


Assuntos
Daucus carota , Daucus carota/genética , Betacianinas , Fotossíntese/genética , Tirosina
10.
BMC Plant Biol ; 23(1): 151, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36941578

RESUMO

BACKGROUND: Water shortage caused by global warming seriously affects the yield and quality of vegetable crops. ß-carotene, the lipid-soluble natural product with important pharmacological value, is abundant in celery. Transcription factor MYB family extensively disperses in plants and plays regulatory roles in carotenoid metabolism and water scarcity response. RESULTS: Here, the AgMYB5 gene encoding 196 amino acids was amplified from celery cv. 'Jinnanshiqin'. In celery, the expression of AgMYB5 exhibited transactivation activity, tissue specificity, and drought-condition responsiveness. Further analysis proved that ectopic expression of AgMYB5 increased ß-carotene content and promoted drought tolerance in transgenic Arabidopsis thaliana. Moreover, AgMYB5 expression promoted ß-carotene biosynthesis by triggering the expression of AtCRTISO and AtLCYB, which in turn increased antioxidant enzyme activities, and led to the decreased contents of H2O2 and MDA, and the inhibition of O2- generation. Meanwhile, ß-carotene accumulation promoted endogenous ABA biosynthesis of transgenic Arabidopsis, which resulted in ABA-induced stomatal closing and delayed water loss. In addition, ectopic expression of AgMYB5 increased expression levels of AtERD1, AtP5CS1, AtRD22, and AtRD29. CONCLUSIONS: The findings indicated that AgMYB5 up-regulated ß-carotene biosynthesis and drought tolerance of Arabidopsis.


Assuntos
Apium , Arabidopsis , Arabidopsis/metabolismo , beta Caroteno , Apium/genética , Apium/metabolismo , Resistência à Seca , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Verduras/genética , Verduras/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Secas , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo
11.
Plant Cell Environ ; 46(9): 2794-2809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37338208

RESUMO

The first domesticated carrots were thought to be purple carrots rich in anthocyanins. The anthocyanins biosynthesis in solid purple carrot taproot was regulated by DcMYB7 within P3 region containing a gene cluster of six DcMYBs. Here, we described a MYB gene within the same region, DcMYB11c, which was highly expressed in the purple pigmented petioles. Overexpression of DcMYB11c in 'Kurodagosun' (KRDG , orange taproot carrot with green petioles) and 'Qitouhuang' (QTHG , yellow taproot carrot with green petioles) resulted in deep purple phenotype in the whole carrot plants indicating anthocyanins accumulation. Knockout of DcMYB11c in 'Deep Purple' (DPPP , purple taproot carrot with purple petioles) through CRISPR/Cas9-based genome editing resulted in pale purple phenotype due to the dramatic decrease of anthocyanins content. DcMYB11c could induce the expression of DcbHLH3 and anthocyanins biosynthesis genes to jointly promote anthocyanins biosynthesis. Yeast one-hybrid assay (Y1H) and dual-luciferase reporter assay (LUC) revealed that DcMYB11c bound to the promoters of DcUCGXT1 and DcSAT1 and directly activated the expression of DcUCGXT1 and DcSAT1 responsible for anthocyanins glycosylation and acylation, respectively. Three transposons were present in the carrot cultivars with purple petioles but not in the carrot cultivars with green petioles. We revealed the core factor, DcMYB11c, involved in anthocyanins pigmentation in carrot purple petioles. This study provides new insights into precise regulation mechanism underlying anthocyanins biosynthesis in carrot. The orchestrated regulation mechanism in carrot might be conserved across the plant kingdom and useful for other researchers working on anthocyanins accumulation in different tissues.


Assuntos
Antocianinas , Daucus carota , Antocianinas/metabolismo , Daucus carota/genética , Daucus carota/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação/genética , Edição de Genes , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834070

RESUMO

The genus Apium, belonging to the family Apiaceae, comprises roughly 20 species. Only two species, Apium graveolens and Apium leptophyllum, are available in China and are both rich in nutrients and have favorable medicinal properties. However, the lack of genomic data has severely constrained the study of genetics and evolution in Apium plants. In this study, Illumina NovaSeq 6000 and Nanopore sequencing platforms were employed to identify the mitochondrial genomes of A. graveolens and A. leptophyllum. The complete lengths of the mitochondrial genomes of A. graveolens and A. leptophyllum were 263,017 bp and 260,164 bp, respectively, and contained 39 and 36 protein-coding genes, five and six rRNA genes, and 19 and 20 tRNA genes. Consistent with most angiosperms, both A. graveolens and A. leptophyllum showed a preference for codons encoding leucine (Leu). In the mitochondrial genome of A. graveolens, 335 SSRs were detected, which is higher than the 196 SSRs found in the mitochondrial genome of A. leptophyllum. Studies have shown that the most common RNA editing type is C-to-U, but, in our study, both A. graveolens and A. leptophyllum exhibited the U-C editing type. Furthermore, the transfer of the mitochondrial genomes of A. graveolens and A. leptophyllum into the chloroplast genomes revealed homologous sequences, accounting for 8.14% and 4.89% of the mitochondrial genome, respectively. Lastly, in comparing the mitochondrial genomes of 29 species, it was found that A. graveolens, A. leptophyllum, and Daucus carota form a sister group with a support rate of 100%. Overall, this investigation furnishes extensive insights into the mitochondrial genomes of A. graveolens and A. leptophyllum, thereby enhancing comprehension of the traits and evolutionary patterns within the Apium genus. Additionally, it offers supplementary data for evolutionary and comparative genomic analyses of other species within the Apiaceae family.


Assuntos
Apiaceae , Apium , Daucus carota , Genoma de Cloroplastos , Genoma Mitocondrial , Magnoliopsida , Filogenia , Apium/genética , Genoma Mitocondrial/genética , Apiaceae/genética , Daucus carota/genética , Magnoliopsida/genética
13.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686147

RESUMO

Celery (Apium graveolens L.) is an important vegetable crop cultivated worldwide for its medicinal properties and distinctive flavor. Volatile organic compound (VOC) analysis is a valuable tool for the identification and classification of species. Currently, less research has been conducted on aroma compounds in different celery varieties and colors. In this study, five different colored celery were quantitatively analyzed for VOCs using HS-SPME, GC-MS determination, and stoichiometry methods. The result revealed that γ-terpinene, d-limonene, 2-hexenal,-(E)-, and ß-myrcene contributed primarily to the celery aroma. The composition of compounds in celery exhibited a correlation not only with the color of the variety, with green celery displaying a higher concentration compared with other varieties, but also with the specific organ, whereby the content and distribution of volatile compounds were primarily influenced by the leaf rather than the petiole. Seven key genes influencing terpenoid synthesis were screened to detect expression levels. Most of the genes exhibited higher expression in leaves than petioles. In addition, some genes, particularly AgDXS and AgIDI, have higher expression levels in celery than other genes, thereby influencing the regulation of terpenoid synthesis through the MEP and MVA pathways, such as hydrocarbon monoterpenes. This study identified the characteristics of flavor compounds and key aroma components in different colored celery varieties and explored key genes involved in the regulation of terpenoid synthesis, laying a theoretical foundation for understanding flavor chemistry and improving its quality.


Assuntos
Apium , Compostos Orgânicos Voláteis , Apium/genética , Cor , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Verduras
14.
Plant J ; 108(4): 1116-1130, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547154

RESUMO

Carotenoids are important natural pigments that give bright colors to plants. The difference in the accumulation of carotenoids is one of the key factors in the formation of various colors in carrot taproots. Carotenoid cleavage dioxygenases (CCDs), including CCD and 9-cis epoxycarotenoid dioxygenase, are the main enzymes involved in the cleavage of carotenoids in plants. Seven CCD genes have been annotated from the carrot genome. In this study, through expression analysis, we found that the expression level of DcCCD4 was significantly higher in the taproot of white carrot (low carotenoid content) than orange carrot (high carotenoid content). The overexpression of DcCCD4 in orange carrots caused the taproot color to be pale yellow, and the contents of α- and ß-carotene decreased sharply. Mutant carrot with loss of DcCCD4 function exhibited yellow color (the taproot of the control carrot was white). The accumulation of ß-carotene was also detected in taproot. Functional analysis of the DcCCD4 enzyme in vitro showed that it was able to cleave α- and ß-carotene at the 9, 10 (9', 10') double bonds. In addition, the number of colored chromoplasts in the taproot cells of transgenic carrots overexpressing DcCCD4 was significantly reduced compared with that in normal orange carrots. Results showed that DcCCD4 affects the accumulation of carotenoids through cleavage of α- and ß-carotene in carrot taproot.


Assuntos
Carotenoides/metabolismo , Daucus carota/enzimologia , Dioxigenases/metabolismo , Proteínas de Plantas/metabolismo , Daucus carota/genética , Dioxigenases/genética , Expressão Gênica , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plastídeos/metabolismo , beta Caroteno/metabolismo
15.
Planta ; 256(6): 104, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36308565

RESUMO

MAIN CONCLUSION: Distinct plastid types and ultrastructural changes are associated with differences in carotenoid pigment profiles in differently coloured carrots, and a variant of the OR gene, DcOR3Leu is vital for chromoplast biogenesis. Accumulation of different types and amounts of carotenoids in carrots impart different colours to their taproots. In this study, the carotenoid pigment profiles, morphology, and ultrastructure of plastids in 25 carrot varieties with orange, red, yellow, or white taproots were investigated by ultra-high performance liquid chromatography as well as light and transmission electron microscopy. α-/ß-Carotene and lycopene were identified as colour-determining carotenoids in orange and red carrots, respectively. In contrast, lutein was identified as the colour-determining carotenoid in almost all tested yellow and white carrots. The latter contained only trace amounts of lutein as a unique detectable carotenoid. Striking differences in plastid types that coincided with distinct carotenoid profiles were observed among the differently coloured carrots. Microscopic analysis of the different carotenoid pigment-loaded plastids revealed abundant crystalloid chromoplasts in the orange and red carrots, whereas amyloplasts were dominant in most of the yellow and white carrots, except for the yellow carrot 'Yellow Stone', where yellow chromoplasts were observed. Plastoglobuli and crystal remnants, the carotenoid sequestering substructures, were identified in crystalloid chromoplasts. Crystal remnants were often associated with a characteristic undulated internal membrane in orange carrots or several undulated membranes in red carrots. No crystal remnants, but some plastoglobuli, were observed in the plastids of all tested yellow and white carrots. In addition, the presence of chromoplast in carrot taproots was found to be associated with DcOR3Leu, a natural variant of DcOR3, which was previously reported to be co-segregated with carotene content in carrots. Knocking out DcOR3Leu in the orange carrot 'Kurodagosun' depressed chromoplast biogenesis and led to the generation of yellow carrots. Our results support that DcOR3Leu is vital but insufficient for chromoplasts biogenesis in carrots, and add to the understanding of the formation of chromoplasts in carrots.


Assuntos
Daucus carota , Daucus carota/genética , Daucus carota/ultraestrutura , Luteína/análise , Plastídeos/ultraestrutura , Carotenoides/análise , beta Caroteno/análise
16.
Plant Cell Rep ; 41(1): 139-151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34601645

RESUMO

KEY MESSAGE: Overexpression of AgMYB12 in celery improved the accumulation of apigenin by interacting with the AgFNS gene. Celery is a common vegetable, and its essential characteristic is medicine food homology. A natural flavonoid and a major pharmacological component in celery, apigenin plays an important role in human health. In this study, we isolated a novel R2R3-MYB transcription factor that regulates apigenin accumulation from the celery cultivar 'Jinnan Shiqin' through yeast one-hybrid screening and designated it as AgMYB12. The AgMYB12 protein was located in the nucleus. It showed transcriptional activation activity and bound specifically to the promoter of AgFNS, a gene involved in apigenin biosynthesis. Phylogenetic tree analysis demonstrated that AgMYB12 belongs to the flavonoid branch. It contains two flavonoid-related motifs, SG7 and SG7-2, and shared a highly conserved R2R3 domain with flavonoid-related MYBs. The homologous overexpression of AgMYB12 induced the up-regulation of AgFNS gene expression and accumulation of apigenin and luteolin in celery. Additionally, the expression levels of apigenin biosynthesis-related genes, including AgPAL, AgCHI, AgCHS, Ag4CL, and AgC4H, increased in transgenic celery plants. These results indicated that AgMYB12 acted as a positive regulator of apigenin biosynthesis and activated the expression of AgFNS gene. The current study provides new information about the regulation mechanism of apigenin metabolism in celery and offers a strategy for cultivating the plants with high apigenin content.


Assuntos
Apigenina/biossíntese , Apium/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Apium/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
17.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456930

RESUMO

The TALE gene family is a subfamily of the homeobox gene family and has been implicated in regulating plant secondary growth. However, reports about the evolutionary history and function of the TALE gene family in bamboo are limited. Here, the homeobox gene families of moso bamboo Olyra latifolia and Bonia amplexicaulis were identified and compared. Many duplication events and obvious expansions were found in the TALE family of woody bamboo. PhTALEs were found to have high syntenies with TALE genes in rice. Through gene co-expression analysis and quantitative real-time PCR analysis, the candidate PhTALEs were thought to be involved in regulating secondary cell wall development of moso bamboo during the fast-growing stage. Among these candidate PhTALEs, orthologs of OsKNAT7, OSH15, and SH5 in moso bamboo may regulate xylan synthesis by regulating the expression of IRX-like genes. These results suggested that PhTALEs may participate in the secondary cell wall deposition in internodes during the fast-growing stage of moso bamboo. The expansion of the TALE gene family may be implicated in the increased lignification of woody bamboo when divergent from herbaceous bamboos.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Parede Celular/genética , Genes Homeobox , Oryza/genética , Poaceae/genética , Poaceae/metabolismo
18.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233158

RESUMO

The taproot of purple carrot accumulated rich anthocyanin, but non-purple carrot did not. MYB transcription factors (TFs) condition anthocyanin biosynthesis in many plants. Currently, genome-wide identification and evolution analysis of R2R3-MYB gene family and their roles involved in conditioning anthocyanin biosynthesis in carrot is still limited. In this study, a total of 146 carrot R2R3-MYB TFs were identified based on the carrot transcriptome and genome database and were classified into 19 subfamilies on the basis of R2R3-MYB domain. These R2R3-MYB genes were unevenly distributed among nine chromosomes, and Ka/Ks analysis suggested that they evolved under a purified selection. The anthocyanin-related S6 subfamily, which contains 7 MYB TFs, was isolated from R2R3-MYB TFs. The anthocyanin content of rhizodermis, cortex, and secondary phloem in 'Black nebula' cultivar reached the highest among the 3 solid purple carrot cultivars at 110 days after sowing, which was approximately 4.20- and 3.72-fold higher than that in the 'Deep purple' and 'Ziwei' cultivars, respectively. The expression level of 7 MYB genes in purple carrot was higher than that in non-purple carrot. Among them, DcMYB113 (DCAR_008994) was specifically expressed in rhizodermis, cortex, and secondary phloem tissues of 'Purple haze' cultivar, with the highest expression level of 10,223.77 compared with the control 'DPP' cultivar at 70 days after sowing. DcMYB7 (DCAR_010745) was detected in purple root tissue of 'DPP' cultivar and its expression level in rhizodermis, cortex, and secondary phloem was 3.23-fold higher than that of secondary xylem at 110 days after sowing. Our results should be useful for determining the precise role of S6 subfamily R2R3-MYB TFs participating in anthocyanin biosynthesis in carrot.


Assuntos
Daucus carota , Antocianinas/metabolismo , Daucus carota/genética , Daucus carota/metabolismo , Regulação da Expressão Gênica de Plantas , Genes myb , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743137

RESUMO

The enhancement of photosynthesis of tea leaves can increase tea yield. In order to explore the regulation mechanism of exogenous melatonin (MT) on the photosynthetic characteristics of tea plants, tea variety 'Zhongcha 108' was used as the experimental material in this study. The effects of different concentrations (0, 0.2, 0.3, 0.4 mM) of melatonin on the chlorophyll (Chl) content, stomatal opening, photosynthetic and fluorescence parameters, antioxidant enzyme activity, and related gene expression of tea plants were detected and analyzed. The results showed that under 0.2-mM MT treatment, chlorophyll (Chl) content, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) improved, accompanied by a decrease in stomata density and increase in stomata area. Zero point two millimolar MT increased Chl fluorescence level and superoxide dismutase (SOD) activity, and reduced hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, indicating that MT alleviated PSII inhibition and improved photochemical efficiency. At the same time, 0.2 mM MT induced the expression of genes involved in photosynthesis and chlorophyll metabolism to varying degrees. The study demonstrated that MT can effectively enhance the photosynthetic capacity of tea plants in a dose-dependent manner. These results may promote a comprehensive understanding of the potential regulatory mechanism of exogenous MT on photosynthesis in tea plants.


Assuntos
Camellia sinensis , Melatonina , Antioxidantes/farmacologia , Camellia sinensis/metabolismo , Clorofila/metabolismo , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Fotossíntese , Folhas de Planta , Chá/metabolismo
20.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012559

RESUMO

Nitrate nitrogen is an important nitrogen source for tea plants' growth and development. LBD transcription factors play important roles in response to the presence of nitrate in plants. The functional study of LBD transcription factors in tea plants remains limited. In this study, the LBD family gene CsLBD39 was isolated and characterized from tea plants. Sequence analysis indicated that CsLBD39 contained a highly conserved CX2CX6CX3CX domain. The phylogenetic tree assay showed that CsLBD39 belonged to class II subfamily of the LBD family. CsLBD39 was highly expressed in flowers and root; we determined that its expression could be induced by nitrate treatment. The CsLBD39 protein was located in the nucleus and has transcriptional activation activity in yeast. Compared with the wild type, overexpression of CsLBD39 gene in Arabidopsis resulted in smaller rosettes, shorter main roots, reduced lateral roots and lower plant weights. The nitrate content and the expression levels of genes related to nitrate transport and regulation were decreased in transgenic Arabidopsis hosting CsLBD39 gene. Compared with the wild type, CsLBD39 overexpression in transgenic Arabidopsis had smaller cell structure of leaves, shorter diameter of stem cross section, and slender and compact cell of stem longitudinal section. Under KNO3 treatment, the contents of nitrate, anthocyanins, and chlorophyll in leaves, and the content of nitrate in roots of Arabidopsis overexpressing CsLBD39 were reduced, the expression levels of nitrate transport and regulation related genes were decreased. The results revealed that CsLBD39 may be involved in nitrate signal transduction in tea plants as a negative regulator and laid the groundwork for future studies into the mechanism of nitrate response.


Assuntos
Arabidopsis , Camellia sinensis , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Nitrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA