Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(8): 2557-2576, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703205

RESUMO

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.


Assuntos
Biomarcadores , Hepatopatia Veno-Oclusiva , Metabolômica , Alcaloides de Pirrolizidina , Receptores Citoplasmáticos e Nucleares , Alcaloides de Pirrolizidina/toxicidade , Animais , Hepatopatia Veno-Oclusiva/induzido quimicamente , Hepatopatia Veno-Oclusiva/metabolismo , Hepatopatia Veno-Oclusiva/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Masculino , Humanos , Biomarcadores/metabolismo , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Feminino , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Ácido Cólico , Adulto
2.
Food Chem ; 445: 138748, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422865

RESUMO

Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.


Assuntos
Alcaloides de Pirrolizidina , Alcaloides de Pirrolizidina/análise , Espectrometria de Massas , Alimentos
3.
J Ethnopharmacol ; 331: 118331, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734392

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng saponins (PNS), as the main active component of Panax notoginseng, shows broad pharmacological effects but with low oral bioavailability. Borneol (BO) is commonly used as an adjuvant drug in the field of traditional Chinese medicine, which has been proven to facilitate the absorption of ginsenosides such as Rg1 and Rb1 in vivo. The presence of chiral carbons has resulted in three optical isomers of BO commercially available in the market, all of which are documented by national standards. AIM OF THE STUDY: This study aimed to investigate the role of BO in promoting the oral absorption of PNS from the perspective of optical configuration and compatibility ratios. MATERIALS AND METHODS: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UPLC-QTRAP-MS/MS) method was validated and applied to determine the concentrations of five main saponins in PNS in rat plasma. The kinetic characteristics of PNS were compared when co-administered with BO based on optical isomerism and different compatibility ratios. RESULTS: The results showed that BO promoted the exposure of PNS in rats. Three forms of BO, namely d-borneol (DB), l-borneol (LB), and synthetic borneol (SB), exhibited different promotion strengths. SB elevated PNS exposure in rats more than DB or LB. It is also interesting to note that under different compatibility ratios, SB can exert a strong promoting effect only when PNS and BO were combined in a 1:1 ratio (PNS 75 mg/kg; BO 75 mg/kg). As a pharmacokinetic booster, the dosage of BO is worthy of consideration and should follow the traditional medication principles of Chinese medicine. CONCLUSIONS: This study shed new light on the compatible use of PNS and BO from the perspective of "configuration-dose-influence" of BO. The results provide important basis for the clinical application and selection of BO.


Assuntos
Canfanos , Panax notoginseng , Ratos Sprague-Dawley , Saponinas , Espectrometria de Massas em Tandem , Animais , Panax notoginseng/química , Canfanos/farmacocinética , Saponinas/farmacocinética , Saponinas/química , Saponinas/administração & dosagem , Saponinas/sangue , Masculino , Administração Oral , Ratos , Cromatografia Líquida de Alta Pressão , Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/farmacocinética , Disponibilidade Biológica
4.
Phytomedicine ; 133: 155938, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39163753

RESUMO

BACKGROUND: Shengmai San Formula (SMS) is a traditional Chinese medicine (TCM) that has been used to treat wasting-thirst regarded as diabetes mellitus, which occurs disproportionately in obese patients. Therefore, we investigated whether SMS could be used to treat obesity, and explored possible mechanisms by which it might improve glucose and fat metabolism. METHODS: To investigate the effects of SMS on a high-fat diet (HFD)-induced obesity (DIO) model, we studied glucose metabolism via glucose tolerance testing (GTT) and insulin tolerance testing (ITT). Browning of white adipose tissue (WAT) was evaluated using H&E staining, along with browning-related gene and protein expression. Changes in bile acid (BA) levels in serum, liver, ileum, and inguinal white adipose tissue were detected by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In addition, antimicrobial mixture (ABX) and fecal microbial transplantation (FMT) experiments were used to verify the role of gut flora in the effects produced by SMS on HFD-induced obesity model. RESULTS: SMS ameliorated diet-induced dyslipidemia in a dose-dependent manner and reduced glucose intolerance and insulin resistance in DIO mice, helping to restore energy metabolism homeostasis. SMS significantly altered the structure of intestinal microbiome composition, decreasing the abundance of Lactobacillus carrying bile salt hydrolase (BSH) enzymes and thereby increasing the level of conjugated BAs in the blood, ileum, and iWAT. Increased TCA content promoted the secretion of Slit3 from M2 macrophages in iWAT, which activates the protein kinase A/calmodulin-dependent protein kinase II (PKA/CaMKII) signaling pathway in sympathetic neurons via the roundabouts receptor 1(ROBO1). This pathway promotes the synthesis and release of norepinephrine (NE), inducing cyclic adenosine monophosphate (cAMP) release in adipose tissue that activates the cyclic adenosine monophosphate/protein kinase A/phosphorylated hormone-sensitive lipase (cAMP/PKA/pHSL) pathway and enhances WAT browning. ABX treatment eliminated SMS effects on glucose and lipid metabolism in DIO mice, whereas glucose and lipid metabolism in obese mice improved following SMS-FMT and increased the level of serum bile acids. CONCLUSION: SMS affects intestinal flora and bile acid composition in vivo and increased TCA promotes M2 macrophage polarization and Slit3 release in adipose tissue. This induces NE release and increases WAT browning in obese mice, which may be a mechanism by which SMS could be used to treat obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA