Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38640042

RESUMO

Multimodal medical image fusion aims to integrate complementary information from different modalities of medical images. Deep learning methods, especially recent vision Transformers, have effectively improved image fusion performance. However, there are limitations for Transformers in image fusion, such as lacks of local feature extraction and cross-modal feature interaction, resulting in insufficient multimodal feature extraction and integration. In addition, the computational cost of Transformers is higher. To address these challenges, in this work, we develop an adaptive cross-modal fusion strategy for unsupervised multimodal medical image fusion. Specifically, we propose a novel lightweight cross Transformer based on cross multi-axis attention mechanism. It includes cross-window attention and cross-grid attention to mine and integrate both local and global interactions of multimodal features. The cross Transformer is further guided by a spatial adaptation fusion module, which allows the model to focus on the most relevant information. Moreover, we design a special feature extraction module that combines multiple gradient residual dense convolutional and Transformer layers to obtain local features from coarse to fine and capture global features. The proposed strategy significantly boosts the fusion performance while minimizing computational costs. Extensive experiments, including clinical brain tumor image fusion, have shown that our model can achieve clearer texture details and better visual quality than other state-of-the-art fusion methods.

2.
PLoS One ; 10(4): e0120151, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915744

RESUMO

This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective.


Assuntos
Algoritmos , Osso e Ossos/anatomia & histologia , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Modelos Anatômicos , Animais , Simulação por Computador , Mãos/anatomia & histologia , Humanos , Modelos Logísticos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA