RESUMO
A 30-year-old woman with ankylosing spondylitis was referred to our clinic with abnormal fetal echocardiography findings, including ascending aortic dilatation, giant main pulmonary artery aneurysm, and aortic and pulmonary valve stenosis at 22 weeks of gestation. The full-term male neonate was born by cesarean section and was transferred to the cardiac intensive care unit soon after delivery for respiratory distress with low percutaneous oxygen saturation. Based on cardiovascular and genetic analysis findings, the patient was diagnosed with Marfan syndrome. Surgery was performed; however, the patient died due to cardiac arrest. In conclusion, main pulmonary artery dilatation and aneurysms are uncommon in Marfan syndrome; therefore, presentation with these findings during the fetal life, as in the present case, is likely a sign of severe Marfan syndrome-related cardiac involvement.
RESUMO
Sorafenib, a first-line drug for advanced hepatocellular carcinoma (HCC), shows a favorable anti-tumor effect while resistance is a barrier impeding patients from benefiting from it. Thus, more efforts are needed to lift this restriction. Herein, we first find that solute carrier family 27 member 5 (SLC27A5/FATP5), an enzyme involved in the metabolism of fatty acid and bile acid, is downregulated in sorafenib-resistant HCC. SLC27A5 deficiency facilitates the resistance towards sorafenib in HCC cells, which is mediated by suppressing ferroptosis. Further mechanism studies reveal that the loss of SLC27A5 enhances the glutathione reductase (GSR) expression in a nuclear factor erythroid 2-related factor 2 (NRF2)-dependent manner, which maintains glutathione (GSH) homeostasis and renders insensitive to sorafenib-induced ferroptosis. Notably, SLC27A5 negatively correlates with GSR, and genetic or pharmacological inhibition of GSR strengthens the efficacy of sorafenib through GSH depletion and the accumulation of lipid peroxide products in SLC27A5-knockout and sorafenib-resistant HCC cells. Based on our results, the combination of sorafenib and carmustine (BCNU), a selective inhibitor of GSR, remarkably hamper tumor growth by enhancing ferroptotic cell death in vivo. In conclusion, we describe that SLC27A5 serves as a suppressor in sorafenib resistance and promotes sorafenib-triggered ferroptosis via restraining the NRF2/GSR pathway in HCC, providing a potential therapeutic strategy for overcoming sorafenib resistance.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Glutationa Redutase/metabolismo , Glutationa Redutase/farmacologia , Glutationa Redutase/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Transporte de Ácido GraxoRESUMO
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Spike protein that mediates coronavirus entry into host cells is a major target for COVID-19 vaccines and antibody therapeutics. However, multiple variants of SARS-CoV-2 have emerged, which may potentially compromise vaccine effectiveness. Using a pseudovirus-based assay, we evaluated SARS-CoV-2 cell entry mediated by the viral Spike B.1.617 and B.1.1.7 variants. We also compared the neutralization ability of monoclonal antibodies from convalescent sera and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine) and ZF2001 (RBD-subunit vaccine) against B.1.617 and B.1.1.7 variants. Our results showed that, compared to D614G and B.1.1.7 variants, B.1.617 shows enhanced viral entry and membrane fusion, as well as more resistant to antibody neutralization. These findings have important implications for understanding viral infectivity and for immunization policy against SARS-CoV-2 variants.